


D

M68PRM(D)
NOV., 1976

EXORdisk, and EXORtape are trademarks of Motorola Inc.

First Edition

Motorola, Inc. 1976
“All Rights Reserved”

i



ii



CHAPTER 1:

CHAPTER 2:

2.0

2.1

2.1.1

2.1.1.1

2.1.1.2

2.1.1.3

2.1.1.4

2.1.2

2.1.2.1

CHAPTER 3:

3.0
3.1

3.2

3.3

3.3.1

3.3.2

3.3.3

3.3.4
3.3.5

3.3.6

3.3.7
3.3.8

3.3.9

3.4

3.4.1

3.4.2

TABLE OF CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

HARDWARE DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...2-1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . .
,.\*.

. . Ziq;.,$$,

The Basic Microcomputer Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,. *A~$p

A Minimum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...$:iy~~~~

MPU — Microprocessor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..$p$.~~l$. 2-2
ROM —1024x8-Bit Read Only Memory . . . . . . . . . . . . . .

.,.,;7)
,~ ‘?{~,.?” 2-4. . .,%$a.~,*,..*,~,. . . .

RAM —128x8-Bit Static Random Access . . . . . . . . . . . . . .. ??~~~.......2-4
PIA— Peripheral interface Adapter . . . . . . . . . . . . . . . ..e.’~.$~ 2-4,\x,,>k.\:\x$.!.. . “ . . . . . . .
Expanding the Basic System . . . . . . . . . . . . . . . . . . . ..Y.$....W... . . . . . . ...2-6‘s’.’.$>1>.

ACIA—Asynchronous Communications Interface x$@&r . . . . . . . . . . ..2-6
/.iiw*:,,},\?’;.<.)i\*.’.:>l,.> l..

PROGRAMMING THE M6800MlCROPROCESSQ#j:~W7. . . . . . . . . . . . . . . ...3-1
,~&$7::,.,i..~‘....,:.,?, ‘$$::

It:+.,,.,,,\lft’ $m,:~$:t?
Machine Code . . . . . . . . . . . . . . . . . ., . . ..q+... q. . . . . . . . . . . . . . . . . . . . . . . . ...3-1

.&.,,,,’:’.,%J?<.

Stack and Stack Pointer .,...... . . ..~~~i$~.... ~. . . . . . . . . . . . . . . . . . . . . . . . ...3-1

Saving MPU Status . . . . . . . . . . .. l..{~~.~ . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-3

Interrupt Pointers . . . . . . . . . . . .
,,q.>,‘.$?,i...c~

..+$$y.$*:.:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Reset (or Power On) . . . . ..i~+ ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-4

Non-Maskable lnterru,~—~Ml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5

Software interrupt -~Q~* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5

lnterruptReque~~,jfi/?: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-5

Wait lnstructio~$~&&Al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-6

Manipulati@$~~~fie interrupt Mask Bit , . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-6

Special,:~~~ammingR equirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3-7
Look-~’e~~YFeature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-7

Re~$rk~#dm interrupt —RTl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3-7
Sub$#&]fl&~inkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-8

&@@flSubroutine.B SRor JSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3.8
.S$#.l~Heturn from Subroutine — RAT S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3-8

3.5 .$~$l~3aSt oragein theStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.6 “’<~$~%ReentrantC ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,.........3-9<**,,..’.,,+,

4.1

4.2
4.3

4.4

4.5

4.6
4.7

M6800 MICROPROCESSOR ADDRESSING MODES . . . . . . . . . . . . . . . . . . ...4-1

Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...4-1

Dual Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...4-1

Accumulator Addressing (Single Operand) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Inherent Addressing . . . . . . . . . . .

Immediate Addressing . . . . . . . . .

Relative Addressing . . . . . . . . . . .

Indexed Addressing . . . . . . . . . . .
Direct and Extended Addressing

,..
Ill

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6



APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:

APPENDIX G:

TABLE OF CONTENTS (Continued)

DEFINITION OF THE EXECUTABLE INSTRUCTIONS . . . . . . . . . . . . . . . . . . . A-1
EXbug AND MAID COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B-l
MIKbug COMMANDS . . . . . . . . . . . . . . . . ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. C-l
MINlbug 11COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~. ;~:~-1
MINlbug 111COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,~,,t>;g-y
ASCII CODE CONVERSION TABLE... ., . . . . . . . . . . . . . . . . . . . . . . . ..@.&o.~F-l
HEXADECIMAL AND DECIMAL CONVERSION ..,.. .,ii$; $%;..il$;$%;.. G-l

..... *!::*~,>~i:‘“ *.:.@.,.l~+$i~$.>“.&\,~t’$...,...x~.iv:$l,.<,>$,..,!..i$g:’.$:}
$?$,.>,~.>.-$:., ‘$*,“$J,.\$.~{.,~$..\\.$,,,,%,.,..:.>\)$$.%,$,.1.$,‘$)&.*.**J\,..,.y.~.,~>?,,\\h\.d’~~ ,..~ll.,,$~;,~.,?‘*>:,\,.. ~“:)‘“>$,.?)~~’,.it,t..-::,;..tf..,>,

iv



CHAPTER 1

B INTRODUCTION

1.0 ‘ INTRODUCTION

D

1-1



1-2



D

D

D

CHAPTER 2
HARDWARE DESCRIPTION

2.0 INTRODUCTION

The MC6800 MPU is the nucleus of a series of fully bus-compatible, silicon gate NMO&st,
building blocks which are interconnected into the desired microcomputer system configu ratio~~+i,,;>~~,’

?>’.J.’\:<*>.,\:;,:!,:h

Development tools are also available which emulate system function and perfOrrn,aq#@.~$

that hardware may be evaluated and system sotiware and firmware generated and debuQ*The
most powerful is the M6800 EXORciser. By configuring its modules in his system’s liken@$,@ user

possesses a surrogate prototype with which to edit, assemble and modify his progra~$~fi~b~l time on
the actual hardware,

*’*LL&$,a’.:8. .+-,>,,:),...~~>w~~p,k’~:~,,,,,.’~.~x.:\:..-~.T*.\..~?~$+,,;;:$. .. ...\l[::
2.1

, ,,~,.b,*?’
THE BASIC MICROCOMPUTER COMPONENTS

~~.,~ >?‘~~e,\.:,;/:,,.~~~’‘
‘~:,~\,.::$~~.”,,*>>). ,-,.>,,),,

A minimum system can be assembled with four LSI (Larg~~~al&lntegration) bus oriented
“.’?.

patis:
.,-... “’5>*~i$.*;:>$h..,3

‘*t. $.<‘.!:‘ ‘Y:,.,:,....
MPU — Microprocessor ROM — 10#~~8 Read Only Memory

RAM — 128 X 8 Random Access Memory PIA — ,*tipN&ral Interface Module
.....)...;’.,*,.,$:.-’,~“.! $,\~\,,i~\ .$.,

2.1.1 A Minimum System {$,,&*jl\p*~*.*{,..
‘:!)>*,..’.Jiy:\i:.*,\i*,..

These pafls can be interconnected wi@ou~ intetiace parts making a minimum functional

system (Figure 2-1). Such a system can easi{~~,~ adapted for a number of small scale applications by
simply changing the application progra~,~~~eht of the ROM.

,,, ~.?!
.)$;.*:.?’~.!...>., ,,:>

!J:i$xy$ti$y.
,,i:\:)..\:*,.,+>,., :,‘*\’?.\;...\~.!+.,~:)s:,.\\\ .

[ ~,,$,-,*~.il~‘~~v.

\ AO-Al

I A13

A14

I I

Data BUS DO. D7

CA1

CA2 $1TO
Peripheral

PAO-PA7 ,,A”

~

- RSO-RSl

+ Cso

+ Cs 1

+ CS2

+ RN
PBO-PB7

To

CB 1
Peripheral

,,6’,

+ DO.D7 CB2

IRQA IRQB

1 I

FIGURE 2-1. Minimum System Configuration

2-1



The minimum system may be expanded without the addition of TTL integrated circuits

providing the load does not exceed the capacity of the MPU. The MPU has capacity to drive a load of
one standard TTL input and 130 picofarads at one megahertz.

“ 2.1.1.1 MPU - Microprocessing Unit

Some of the more important features of the MC6800 Microprocessing Unit that contrih~te
to the “ease of use” in a system are:

.,,.l.$,:,$.y;:i~:,>\\$,,~,’??....<f,+>):t
. Eight-bit parallel processing

,,.+.>,.‘..’*.,$;:,J,.l.,?

. Bi-directional data bus
.;,,,:,:,,~ ,Fl‘,,.$r,,,\,.........!}h,$?:$”,i ?},>

● sixteen-bit address bus — 65k bytes of addressing
,...,,,,\..\i...,,,,W,W,i,s, ,~

:*$.4~!,,:;”,>‘:>
● 72 instructions — variable length .:..:.<$t:li,~i**..9*,?$>~,h,.>*}

. Seven addressing modes — Direct, Relative, Immediate, lndexe~, ‘S~j&nded,

and Accumulator
,,~,,.:...>.:,+,J.h.,,$\,:.,,~1’:,~....,,..,!~.;ji~i,

. Interrupt vectoring
~t?$ ~+,.$*’,\\*.

. Two Accumulators
~,’:*i .*,,\>*

,,iw;yiq~

. Index Register
‘.$:,}..,.,,,,

.:.*.., “:s:,“,~.,t.I...$.
● Program Counter

,,~ :J..,,.,,.“\\t,.tw,}.>..,
~. ~$,

. Stack Pointer and variable length stack :f”’’”’i~~ ‘-”
,:?i> ‘..)/*\\,,,+$..:>,..

● Condition Code Register (6 codes) ;$;i,,,“.:>

. Separate Non-Maskable Interrupt
::,,,,,,,<,:? .,i,,.,l,::+>,,

. Direct Memory Access (DMA) and m’u}~~e~rocessor capability

. Clock operating rates up to 1 MHz ~$:fl+,:l,+$

ii;j;::t,>fi$~,
● Simple interface without TTL ..,.,5,

. Halt/Go and single instructio~ e~ecution capability
. $’

.40 pin package ,.:lit,.:,,,,~.. ...

Implied,

A programming model of ~~$~hroprocessing unit is represented in Figure 2-2. This

comprises all of the registers in the+@i&+which are controlled explicitly by programs. The inputs and
~~l~..’?1s.,,.i~

outputs of the MPU form five f~~$~~~al groups (see Figure 2-3):

1. 8-bit data bus,,, ‘:+$~~

2. 16-bit addr~m’s~@

3. Controls~,:j$?.Js&

41 Cloc~aQ~:J~Signals

5, Pow%${#pply and ground

T~~~@qntial, being concerned with the programming of the MPU, primarily considers the
information~~$j~~’ftransferred on the data bus and the address bus connected to the MPU.

$~~~~“~~is manual, the control signals are considered only as they affect execution of a
progr~k~~e control signals are as follows:~,:$.’‘ ~{::~Si,{,,d$c)‘i ● Reset,,.,?,,,,~,,.~~‘~:: ‘~.’t?t<,:$!t.$ii..y● Halt

~.,s:::,>‘:’::!,,’\*,,..,\ :,$:*i>\. ● Non-Maskable interrupt
\\*
:{: ● Interrupt Request

● Read/ Write

. Data Bus Enable

. Valid Memory Address

. Three-state Control

. Bus Available

Reset, Halt, Non-Maskable Interrupt, and Interrupt Request are considered in Chapter 3.

Read/ Write, Data Bus Enable, and Valid Memory Address are considered only as they relate to the

2-2



H ‘cc”mu’atOrA
? o

ACCB Accumulator B
I I

15 0

I lx ] Index Register
I I
1.5 0

I Pc Program COuntar

15 0

SP Stack Pointar

S,$F3+

FIGURE 2-z. Programming Model of the AOO Microprocessor

,.$

The execution time of any instruction in a program is directly proportional to the clock
period and is, therefore, expressed as a number of clock cycles. Apart from the times of execution of

instructions, the clock inputs are not otherwise considered in this manual.

The information contained in this programming manual applies to programs written for
execution by the microprocessing unit, and is not restricted to any particular set of parts with which the
MPU maybe interconnected in any system. Motorola offers a family of parts that are compatible with
the MPU and which maybe easily assembled into a computing system giving the user the most cost

effective solution to his problem.

2-3



2,1.1.2 ROM – 1024 X 8-Bit Read Only Memory

The MCM6830 is a mask-programmable byte-organized memory designed for use in
4bus-organized systems. It is fabricated with N-channel silicon-gate technology. The ROM operates ‘..

from a single power supply, is compatible with TTL and DTL, and needs no clocks or refreshing
because of static operation,

The memory is compatible with the M6800 Microcomputer Family, providing read ~,ly
storage in byte increments. Memory expansion is provided through multiple chip select inpu~$’.$~~

active level of the chip select inputs and the memory content are defined by the customer. S~fieJ$l~he

important features of the ROM are:
,., ,.,,~{.:,.’.,\’, ‘::,L.,~,.,\,,,\,:’,\\J+*~*.s+t,

. Organized as 1024 bytes (1 byte = 8 bits) ~:,+!, *,,:3i~

● Static operation
$$,...t~‘ ,.,.
“~y,;;,.yti..,.(,~!.’~’..~.~.~<t

● Three-state data output
‘:\ F,*~.,.,~.,<.< .>.,*.${!*,

T.:, .i~~
● Four chip select inputs (mask option)

,$i$k.,.;,+b$-$0$:$:.-<,<t.$p,‘f..\~...
● Single 5 volt power supply ,,.s +1}+:::.s,,

~~”,r! ‘.~~$>y>f,~,.,
● TTL/ DTL compatible .:!~~~?+:’\t!,,\,,,gk*$t\<y~+

. Maximum access time = 575 ns
“~~yhd”

.,.:i;,iw.:~$\‘ ~!.”..\$,,,,,,,
..+,<+.:+gh’’”’~

2.1.1.3 RAM -128 X 8-Bit Static Random Access Me@&g)”
....,::q,,,.

The MCM681O is a byte-organized memory,Qi$sighed for use in bus-organized systems. It
is fabricated with N-channel silicon-gate technology:$3@~AM operates from a single power supply,
has compatibility with TTL and DTL, and needs no,~,~,~~ or refreshing because of static operation.

The memory is compatible with th&$~@OO Microcomputer Family, providing random

storage in byte increments. Memory expansion,~~ provided through multiple chip select inputs. Some
of the important features of the RAM ar,~%,,,, ‘ a

. Organized as 128 byte: ~~j,&#t~ = 8 bits)

● Static operation ‘*\/w‘.,R:’‘,,,.V\!

● Bi-directional, thre~;$#~W~data input/ output

. Six chip select ifi~,wffour active low, two active high)
● Single 5-volt+@Y*@ SupPIY

● TTL/ DT~~~#btible

● Maximul$..a@ess time = 1.0 us for MCM681OL“ XX.:;*.*.,,J>.,,.,
‘\;~.\\* 575 ns for MCM6810L-1‘.~?,.%.7>Y,>* !1

,.:;,’\ .w~!

2.1.1;4 Pt~;~@eripheral Interface Adapter.,?.,.T,:$,,\\,,-~,$~,.,:.,

.<,$~~~$~MC6820 Peripheral Intetiace Adapter provides an effective means of interfacing
peri~~~~lsequipment to the MC6800 Microprocessing Unit (MPU). This device is capable of interfac-

in&~h,~PU to peripherals through two, 8-bit, hi-directional, peripheral data buses and four control
lf~&No external logic is required for interfacing to most peripheral devices.i?”ka.%,,‘ >,,“.>.,..,,.$.\.1:.~,+,.,?~$&#. The functional configuration of the PIA is programmed by the MPU during system initializa-,,$,,,
fion. Each of the peripheral data lines can be programmed to act as an input or output, and each of the

four control/ interrupt lines may be programmed for one of several control modes, as shown in Figure

2-4. This allows a high degree of flexibility in the over-all operation of the interface, Some of the

important features of the PIA are:

. An 8-bit hi-directional data bus for communication with the MPU

● Two hi-directional 8-bit buses for interface to peripherals

● Two programmable control registers

2-4



B

B

Determine Active CAI (CBI ) Transition for Setting
Interrupt Flag IRQA(B)I –(bit b7)

bl = O : I RQA(B)l set by high-to-low transition on

CA1 (CB1).

bl = 1 : IRQA(B)I set by low-to-high transition o“

CA I (CB1).

J
1

r I

I IROA(B) 1 Interrupt Flag (bit b7) I I
Goes high on active transition of CA I (CBI ); Automatically

cleared by MPU Read of Output Register A(B). May also be

cleared by hardware Reset.

I J I

CAI (CBI ) Interrupt Request Enable/Disable

bO= O : Disables lRQA(B~ MPU Interrupt by CA I (CB1)

active transition. ~“:~t..

I
I

IRQA(B)2 Interrupt Flag (bit b6)

CA2 (CB2) Established as Input (b5 = O): Goes high on active

transition of CA2 (CB2); Automatically cleared bv MPU Read

of Output Register A(B). Mav also be cleared by hardware

Reset.

CA2 (CB2) Established as Output (b5 = 1): IRQA(B)2 = O,

not affected by CA2 (CB2) transitions.

~
Detw~~OesMhether Data Direction Register Or Output

CA2 (CB2) Established as Output by b5 = 1

b5 b4 t—— -

1 0

,yr
b3 = O : Write Strobe With CBI Restore,.,

CB2 goes on low on first low-

to high E transition following

an MPU Write into Output

Register B; returned high by

the next active CBI transition.

b3 = 1 : Write Strobe With E Restore

CB2 goes low on first low-to-

high E transition following an

b5 b4 b3 MPU Write into Output
——

L
Register B; returned high bv the

1 1 next low-to-high E transition.

Set/Reset CA2 (CB2)

CA2 (CB2) goes low as MPU writes

b3 = O into Control Register.

CA2 (CB2) goes high as MPU writes

b3 = 1 into Control Register.

I

CA2 (CB2) Established as Input by b5 = O

b5

o

b3

L CA2 (CB2) Interrupt Request Enable/

Disable

b3= O : Disables IRQA(B) MPU

Interrupt bv CA2 (CB2)

active transition. 1

b3= 1 : Enables IRQA(B) MPU

Interrupt bv CA2 (CB2)

active transition.

1. IRQA(B) will occur on next (MPU

generated) positive transition of b3

if CA2 (CB2) active transition

occurred while interrupt was

disabled.

~ Determines Active CA2 (CB2) Transition

for Setting Interrupt Flag IRQA(B)2 –

(bit b6)

b4 = O : IRQA(B)2 set by high-to-low

transition on CA2 (CB2).

b4=l: IRQA(B)2 set bv low-to-high

transition on CA2 (CB2).

F,IGURE 2-4. PIA Control Register Format



I 8-Bit Data Bus I

~ ~ l_J I I II I I IJ

I ! t
*!r.

., ‘j:~!,;:

16-Bit Address Bus
‘. >+@

\\J.t$ih, ,>
.~!:+*!:,.!,

.$~;:p+,$>
MPU = Microprocessing Unit

.:,,

ROM = Read-Only Memory
,“ “ “$:+~oder

RAM = Random Access Memory
?>

PIA = Paripharal Interface Ad~pte~

d

ACIA = Asynchronous Communication Interface Adapter
(MODEM = Modulator/Demodulator)

..~
.,, !~...,,.,#

● TWO programmable data direction ~w~ers

. Four individually controlled interrupt’=~put lines; Two usable as peripheral control out-

puts
.,.. ,<:.’.~>..

,>*x”:.$.,!\ a
● Handshake control logicl,$,~~%~~ri~utand output peripheral operation

● High-impedance thre~+~,$~ ‘and direct transistor drive peripheral lines

. Program controlled ~{~kdtpt and interrupt disable capability

. CMOS compatib4~~wpheral lines, :M?s’.-’:,?\ J.

2.1.2 Expanding t~~$sic System,\\\J,..\ s:,+?\..*--‘,\,:/\~...
The minj,~@::#ystem can be expanded with other family parts to meet the needs of more

complex systems f~~ Figure 2-5), Motorola also is continually developing new parts to add to the
family. . ‘V ‘“

,=,,.
,,$’)<3N,..:,..‘,.>*< +.,#,,!~

2.1.2.1 ~,$~$#A - Asynchronous Communications /nterface Adapter
‘.{i~%~,

.+?,i.?‘~l~’’:?he MC6850 Asynchronous Communications Interface Adapter provides the data format-:*
tiu~~wcontrol to interface serial asynchronous data communications information to bus organized
\\$:::,,.$’.,,,

.,...s~$~~~s such as the MC6800 Micro processing Unit.,i~~.i~\~,,.. . ,
$$$‘“” The bus interface of the MC6850 includes select, enable, read/ write, interrupt and bus
‘~nterface logic to allow data transfer over an 8-bit hi-directional data bus. The parallel data of the bus
system is serially transmitted and received by the asynchronous data interface, with proper formatting
and error checking. The functional configuration of the ACIA is programmed via the data bus during
system initialization. A programmable control register provides variable word lengths, clock division
ratios, transmit control, receive control, and interrupt control (see Figures 2-6 and 2-7). For peripheral
or modem operation, three control lines are provided. These lines allow the ACIA to interface directly

a
with the MC6860L 0-600 bps Digital Modem. Some of the features of the ACIA are:

. Eight and nine-bit transmission

2-6



@Optional even and odd parity
● Parity, overrun and framing error checking

o Programmable control register

. Optional + 1, + 16, and + 64 clock modes
●

●

●

●

●

I

Up to 500 Kbps transmission
False stad bit detection

Peripheral/ modem control functions

Double buffered

One or two stop bit operation

Data Carrier Detect

b2 = O: Indicates carrier is present.
b2=l: Indicates the loss of cavrier.

1. The low-to-high transition of the DCD in-
put causes b2=l and generates an interrupt

(b7=l), (1RQ=O)

2. Reading the Status Register and Rx Data
Register or master resetting the ACIA
causes b2=0 and b7=0.

I

I I
I Interrupt Request II

L
The interrupt request bit is the complement of
the ~output. Any interrupt that is set and
enabled will be available in the status register
In addltlon to the normal IRQ output.

~tf!:$low E transition or a master reset causes
bO = O.

2. A “high” on the DCD input causes bO=O
and the receiver to be reset.

I

—

I overrun condition exists. The next Read
Data Command on the high-to-low E transi- 1
tion causes b5=0 and bo=o.

I

Pari~ Error

b6=l: Indicates that a parity error exists.
The paritv error bit is inhibited if no
paritv is selected.

1. The paritv error status is updated during
the internal receiver data transfer signal.

1
I

I

1
Transmitter Data Register Empty

bl = 1: indicates that the transmitter data
Register is emptv,

bl =0: Indicates that the transmitter data
Register is full.

1. The internal Tx transfer signal forces bl=l.

2. The Write Data Command on the high-to-
Iow E transition causes bl =0.

3. A ‘,high” on the CTS input causes bl=O.

1 I

I Clear to Send I

+---

The CTS bit reflects the CTS input status’for
use bv the MPU for interfacing to a modem.

NOTE: The CTS input does not reset the
transmitter,

FIGURE 2-6. ACIA Status Register Format

2-7



Enable for Receiver Interrupt

b?=l: Enables Interrupt Output in

Receiving Mode

b7 = 0; Disables Interrupt Output in

Receiving Mode

Counter ratio and Master reset select used
in both transmitters and receiver sections

bl bO Function (Tx, Rx)

o 0 +1

o 1 +16

1 0 +64

1 1 MASTER RESET

Transmitter Control Bits: Controls tha Interrupt Output’ and RTS
Output, and provides for Transmission of a Break

b6 b5 Function ,.,.$<;
,,?

00 Sets RTS = O and inhibits Tx intarrupt (TIE) <1 lb
‘>~,$o{)i

o 1 Sats RTS = O and enables Tx interrupt (T1 E)
,\:?,’.\,.*,, ~,.,~,+
~.$,\\\~.y.,\,$.

1 0 Sets RTS=l andinhitits TxinterruPt (TIE) . ~.?*.

b4 b3 b2 Word Length + Parity +Stop Bits

000 7 Even 2

001 7 Odd 2

010 7 Even 1

011 7 Odd 1

100 8 None 2

101 8 Nona 1

110 8 Evan 1

111 8 Odd 1

2-8



CHAPTER

D
PROGRAMMING THE M6800

3
MICROPROCESSOR

3.0 MACHINE CODE

Each of the 72 executable instructions of the source language assembles into 1 to 3 bytes<

of machine code. The number of bytes depends on the paflicular instruction and on the addres~’w~$$$

mode. (The addressing modes which are available for use with the various executive instructi~~~,$]b’s
discussed in Chapter 4).

~i..., ..,\,$*>...~,?,,.,,.. ,,
The coding of the first (or only) byte corresponding to an executable instructi~]s’~~[cient

“:{l...‘:.~,~.’.,

to identify the instruction and the addressing mode. The hexadecimal equivalents oft.~~~~~y codes,

which result from the translation of the 72 instructions in all valid modes of addres&in$W~re shown in

Figure 3-1. There are 197 valid machine codes, 59 of the 256 possible cod,~~~Y@g unassigned.

When an instruction translates into two or three bytes of code<~~~,~~~cond byte, or the

second and third bytes contain(s) an operand, an address, or informati~~~,~~~:’which an address is
obtained during execution. This is explained along with a descriptJ,@~dk-the different addressing

modes in Chapter 4 of this manual.
.>. ~?’... \>,:.$,,3,*8,,:?<<,
‘‘$2<..~$,,+..’.:{,>.~.,.,*,..:..**,,,.,,-

..,. ‘...
The stack consists of any number of loca~~$~~,[n RAM memory. The stack provides for

temporary storage and retrieval of successive by$~$~~ffiformation, which may include any of the
following items: ,,~ ‘“

o

,...,.,
e current status of the MPU .;,,!!?.,,>.:?.

,..<$,$,
● return address ,““ ‘.$\i*i,>”. ~!.::..
● data

*?23*~*.-........ ,,bi?~,,,,,,.,,>.,..!,.. “.*:T,
The stack can be used $~~~:@following purposes:

o interrupt control “’” ? .~‘“,:*:?,\,k,}?},.,
‘ ‘* ‘~i%‘{*\. ,:,%

o subroutine linka~,,,j~ ~

. temporary stok~g~ ~f data (under control of the program)
,SJ’:%w~y~. reentrant @~&+

The micr@@king unit includes a 16-bit stack pointer. This contains an address which

enables the MPU to ~W’’the current location of the stack..$‘
Wh~$K~~~yte of information is stored in the stack, it is stored at the address which is

contained imlM@tack pointer. The stack pointer is decremented (by one) immediately following the

storage i~t&$&ack of each byte of information. Conversely, the stack pointer is incremented (by one)
imme~f~t~~~ before retrieving each byte of information from the stack, and the byte is then obtained

fro,@~:&@fidress contained in the stack pointer. The programmer must ensure that the stack pointer is

~~~~%~zedto the required address before the first execution of an instruction which manipulates the
~fzk.

Normally, the stack will consist of a single block of successive memory locations. However,

some instructions in the source language change the address contained in the stack pointer without
storing or retrieving information into or from the stack. The use of these instructions may result in the

stack being other than one continuous sequence of memory locations, In such a case, it may

D
alternatively be considered that there exist two or more stacks, each of which consists of a block of

successive locations in the memory.



)0 * 40 NEG A
31 NOP

80 SUB A IMM co
41 * 81

SUB B IMM

32 *
CMP A

42 ‘
IMM cl CMP B IMM

33 *
82

43
SBC A

COM A
IMM C2 SBC B IMM

24 *
83 * C3 *

44 LSR A 84
25 *

AND A IMM C4
45 *

AND B IMM

26 TAP
85

46
BIT A IMM C5

ROR A 86
BIT B IMM

LDA A IMM C6
27 TPA 47 ASR A

LDA B
87 *

IMM
*

38 INX 48 ASL A
39 DEX

88 EOR A IMM z
49 ROL A

EOR B IMM

2A CLV
89 ADC A IMM C9

4A DEC A
ADC B

8A
lM~\

ORA A IMM CA ORA B Im
3B SEV 4B *
)C

8B ADD A IMM CB ADD B
CLC 4C INC A 8C CPX A

.’($@&,
IMM cc * ,),:<!,:.,,,,,

3D SEC 4D TST A 8D
/,, .\:p.

3E CLI
BSR REL CD *

,,.}:>?.,,\j***. .~~

4E ●

,,*\\.
8E LDS IMM CE LDX ~ ‘ ‘~ ?fiM

OF SEI
.1,.!3>:‘

4F CLR A 8F *
,q,$:.>i:’~’~,,.,

10 SBA 50 NEG B
CF * .,.1:...t<vt,~

90 SUB A DIR DO
11 CBA 51 ‘ 91

su@:’”’f:;@\,.
DIR

CMP A DIR D1
12 * 52 *

~P~$;$ B
92

DIR

13 *
SBC A DIR D2 >$~~ B

53 COM B
DIR

14 *
93 * D~<,\~~>*

54 LSR B 94
15 *

AND A
55 *

DIR .)~~s ‘?~ND B DIR

16 TAB
95 BIT A DIR p;.,~,,$$ BIT B

56 ROR B
DIR

17
96

TBA
LDA A

57
D~\a ;~& LDA B

ASR B
DIR

97
18 * 58

STA A ,,,DIm’: \ U7

ASL B
STA B DIR

19 DAA
98 EOR A +fl;~lR D8

59 ROL B
B

99 ;,&&;~{pR D9 ::: B
DIR

1A ‘
ADC

5A DEC B
DIR

lB ABA
9A ORA ~A “$+ blR DA

5B *
ORA B DIR

lC * 5C
ADDe? .:%;~,i$’ DIR DB ADD B

INC B ::
DIR

cPw*a,y DIR DC *
lD * 5D TST B 9D * .$>’ *..}?.

IE * 5E *
DD *

9E ‘f%
lF *

DIR DE
CLR B

LDX DIR
9F,~&&$~T~” DIR DF

20 BRA REL ;; NEG
STX DIR

IND A&. ~,\&UB A
21 *

IND EO
61 *

SUB B IND.$%:*<.&cMp A
$$,,,,T<~.,, IND El

22 BHI REL 62 *
CMP B IND

“:&~ SBC A
23 BLS

IND E2 SBC B IND
REL 63 COM INQ A3 *

24 BCC REL 64
E3 *

LSR .@ lNb A4 AND A IND E4
25 BCS REL 65 * . ,$,

AND B IND.\\c).,.at<

26 BNE
A5 BIT A IND E5

REL 66
BIT B

ROR ,>h,:$$ ‘-$IND A6
IND

LDA A IND E6
27 BEQ

LDA B IND
REL 67 ASR..<, $;?> IND A7 STA A IND E7

28 BVC A~:it:~ ?*
STA B IND

REL 68 IND A8
29

EOR A
BVS w~$ .,*

IND E8 EOR B IND
REL 69 IND A9

2A BPL
ADC A IND E9

REL 6A .$Q;@,*
ADC

IND AA
IND

2B BMI REL 6B i}:,, ‘%;*
ORA A IND EA ORA : IND

AB ADD A
2C BGE

IND EB ADD B
REL ~+ ‘>~/iNc

IND
IND AC CPX

2D
IND EC *

BLT REg$ $6~~!?TsT IND AD JSR
2E BGT

IND ED *

~y&; ,>g ;:: IND AE
2F BLE

LDS IND EE LDX IND
IND AF STS

30
IND EF STX IND

TSX ~~~$>:.2: 70 NEG EXT BO
31 INS

SUB A
~$::+i,

EXT FO
71 * B1

SUB B EXT

32
CMP A

PUL 8 A ‘<ik~,f$ 72 *
EXT F1

B2
CMP B EXT

33 PUL,.t~:~*B
SBC A EXT F2

73 COM
SBC B EXT

EXT B3 *
34 DE~s\ ~:k,,j{ 74 LSR

F3 *
EXT B4

35 ~ ~$ *
AND A EXT F4

75 *
AND B

B5
EXT

BIT A EXT F5
36 +,$’%N&&’*t$>A 76 ROR

BIT B EXT
EXT B6

3X, $~$~ B
LDA A EXT F6 LDA B

77 ASR EXT B7
EXT

,@ “$~<A,*
STA A EXT F7

78 ASL
STA B EXT

EXT B8 EOR A EXT F8
#9 $ ~RTS 79 ROL

ADC B EXT
EXT B9

.~~ ? ,
ADC A

7A DEC
EXT F9 ADC B EXT

EXT BA ORA A EXT FA
BB RTI 7B * BB

ORA B EXT

3C *
ADD A

7C
EXT FB

INC
ADD B EXT

EXT BC CPX
3D ●

EXT FC ●

7D TST EXT BD
3E WAI

JSR
7E JMP

EXT FD *
EXT BE

3F Swl
LDS

7F
EXT FE

CLR
LDX EXT

EXT BF STS EXT FF STX EXT

Notes: 1. Addressing Modes: A = Accumulator A IMM = Immediate
B = Accumulator B DIR = Direct
REL = Relative
IND = Indexed

2. Unassigned. code indicated by “*”.

TABLE 3-1. Hexadecimal Values of Machine Codes

3-2



B
3.2 SAVING MPU STATUS

The status of the microprocessing unit is saved in the stack during the following opera-

tions:

● in response to an external condition indicated by a negative edge on the Non-Maskable

Interrupt control input signal to the MPU.

● during execution of the machine code corresponding to either of the source IanguagQ.,

instructions SWI (Software Interrupt) or WAI (Wait for Interrupt).
,az-a<.:.:;$$..$.?.,., s..,..,,.

● during servicing of an interrupt from a peripheral device, in response to a negatiy~]~~#

on the Interrupt Request control input signal to the MPU and provided the inte\#a~F@Ssk,.~++$.,:;,‘.t.~,.
bit (1) is clear.

;.:\~:,.,, ,-+l!Y
,>ij:’.$ \$\,,.

The status is stored in the stack in accordance with the scheme show~$~~~ure 3-2.

Before storing the status, the stack pointer contains the address of a memory loca\io~~~:@resented in

Figure 3-2 by “m.” The stack, if any, extends from location “m + 1” to higher l~~~&ps. The status is

stored in seven bytes of memory, beginning with the byte at location “m,” a~~:~tian~ with the byte at

location “m – 6;’ The stack pointer is decremented after each byte of in[~~@#~&n is entered into the
,,..(,,‘}....’::.+

stack. ,i’:.,,*I,.>,}

The information which is saved in the stack consists of,,&%umerical content of all of the

registers of the programming model, shown in Figure 2-2, exc~$ts~~ stack pointer.

The value stored for the program counter (PCH$~~~PCL) is in accordance with the

following rules:
~,,.j\ ~..,*:>

,;i~~l}.!,,
1. In response to a Non-M askable lnterrup~,&:@”~n interrupt from a peripheral device, the

value saved for the program counter js:%~&,@&dressof that instruction which would next
be executed, if the interrupt had no~$~&brred.

2. During execution of a SW I or W~l instruction, the value saved for

the address of that SWI or ~~$~~nstruction, plus one.
“, ~

m-8

m-7

m-6

m-5

*SP

m-2

Before After

SP = Stack Pointer

CC = Condition Codes (Al= called the Promssor Status Byte)

ACCB = Accumulator B

ACCA = Accumulator A

IXH = Index Register, Higher Order 8 Bits

I XL = Index Register, Lower Order 8 Bits

PC H = Program Counter, Higher Order 8 Bits

PCL = Program Counter, Lower Order 8 Bits

FIGURE 3-2. Saving the Status of the Microprocessor in the Stack

3-3

the program counter is



The values stored for the other registers (CC, ACCB, ACCA, IXH and IXL) are in accor-
dance with the following rules:

1. In response to a Non-Maskable Interrupt, or an interrupt from a peripheral device, the

values saved are those which resulted from the last instruction executed before the 9

interrupt was serviced.

2. During execution of a SWI or WAI instruction, the values saved are those which resulted

from the last instruction executed before the SWI or WAI instruction. ~~*~.*....... $,*,
3. The condition codes H, 1, N, Z, V, and C, in bit positions 5 thru O of the pr@~~&

condition code register, are stored respectively in bit positions 5 thru Oof the #R[~ble

memory location in the stack. Bit positions 7 and 6 of that memory location #s#&l (go to

the 1 state).

of the

addresses of programs which are to be executed in the event of a reset~~~~o’wer on), a low state of the

Non- Maskable Interrupt control input, a software interrupt, or a re~~~,~seto an interrupt signal from a

peripheral device. The respective pointers each occupy two ~fl@@f memory and are disposed at
locations from “n – 7“ to “n,” as indicated in Figure 3-3. ,.,+:.?:.’

The location indicated in Figure 3-3 by “n” is .tiat~cation which is addressed when all the

lines of the address bus are in the high (“1”) state. In ~Q#~~ystems, the location “n” will be the highest

address in the memory. However, the corresponde~$~~$f “n” to a particular numerical value depends
on the hardwired interconnections of the parts @$t%’programmable system to the address bus.

**,..,’/,...;~..->

‘,.$<,~~?,t~,@,~~>,,,m

The Reset control input @*~&~fiPU is used to start the execution of the program, either for
.i’:,f,~.\\?

initial start-up or from a power ~~k.~~bndition following a power failure. When a positive edge is
‘5**7y!,“?

detected on this input line, the ~Qwm counter is loaded with the address stored in the restart pointer

at locations “n – 1” and “~’:,~%k~bmory (see Figure 3-3). The MPU then proceeds with execution of a
Restart Program, which,,Q~~@ with the instruction addressed by the program counter. The restati and

i
the continued executi,~$:~qwever, depends on the Go/ Halt control input bei g in the “Go” condition.

When t$eL~o/ Halt control input is in the high state, the machine will fetch the instruction

addressed byt%~,,pro~ram counter and start execution. When this line changes to a low, execution will~,:,,~:y,$).~’‘,’,..,,\../,,‘.*,
I I

I I

I
—-{Internal interrupt Pointer _ _ —

Software Interrupt Pointer —

{

——

{

Non- Maskable Interrupt Pointer — — —

Reset Pointer

{

——

n-7

n-6

n-5

n-4

n-3

n-2

n-l

n

n = Memory Location Addressed When Al[ Lines of

The Address Bus are in the High (1) State.

FIGURE 3-3. Reset and Interrupt Pointers

3-4



stop. The stop may become effective at the completion of execution of the current instruction.

B

Alternatively, one more instruction may be executed before the stop becomes effective, due to the

look-ahead capability described in Section 3.3.8. Execution of the program will not be resumed until

the “Go” condition is restored.

TheGo/ Halt input must remain in the “Go” condition for the interrupt sequences to be

completed. Otherwise, the machine will stop execution at the end of an instruction. The following

sections of this manual, which describe the interrupt operations, assume that the “Go” stat@~#:~:&

maintained. ,~:,.f\$>.’.,1,,,,.:(<<*&,“ ~‘ i..‘*., ~~~:!tl~~.$,~;:$>/:>.,.>.,.:,’:,* $.??~:t:~:e.,!+?,.s’

3.3.2 NMI
..>‘+”” ‘$:

— Non-Maskable Interrupt .,.. .%Q:F.,:.
“!k~~’”,,$,... \,*,,.i>s$..*+’.$$..,?#.,: >>

The sequence of operations, which occurs following a non-maskable in]er~~t, is initiated
by a negative edge on the Non-Maskable Interrupt control input to the MPU. E~~~~@n of the current

instruction is completed. The response of the MPU to the Non-Maskable lnt:$~@~#gnal may begin on

the completion of execution of the current instruction. Alternatively, on@,,@j@6re instructions in the

program may first be executed, due to the look-ahead capability of.,$ke ~PU described in Section
3.3.8.

,,i),~’$*..;\“$}.~~.,}t.:.,,,~,.,~,,,,}

The status of the MPU is then saved in the stackt$~~’~$scribed in Section 3.2 and the

program counter is loaded with the address stored in the NonJ~l$Skable Interrupt pointer at locations

“n – 3“ and “n – 2“ of memory (see Figure 3-3). The MPU:$~en slarts execution of the Non-Maskable
Interrupt Program, which begins with the instruction wh~~~, fi~w addressed by the program counter..

,!...!}.~~$,,,. ,i:$$.,..,$,,,,,,.,.’..!$,, ,.,...$?yit:.,,.!>::\:.$\,\.
3.3.3 Swl

s...,,

B
— Software Interrupt ,.$<$.> .

,3Y({w‘..,1,)
During execution of the SWlj~&t$u21ion, the status of the M PU is saved in the stack, as<...>\e>.,j:\

described in Section 3.2. The valuq::~~~~ for the program counter is the address of the SWI
*fi,,.*.,”instruction, plus one. v~~,:$,.
“n ~t”

Afier the status has @~@~&aved,the interrupt mask bit “l” is set (1= 1). The MPU will not
respond to an interrupt reqq@%~{~@ a peripheral device while the interrupt mask bit is set.

The program ,~&n~~r is then loaded with the address stored in the software interrupt~:i..,f);i:,.$<:.+~
pointer at locations “n,,,#;&,$nd “n – 4“ of memory (see Figure 3-3). The MPU then proceeds with
execution of a Sofiw~~e$~ferrupt Program, which begins with the instruction whose address is now in
the program cou~~~r. “%F

Th@::m@ will remain insensitive to an interrupt request from any peripheral device

(signalled ~$~f~w” state of the Interrupt Request control input signal to the MPU) until the interrupt
mask bit~i~,~ben reset by execution of the programmed instructions.~,>..\-,

d> ‘,:$..,, .,.1>. .

.,\,.
A request for an interrupt by a peripheral device is signalled by a low state of the Interrupt

Request control input to the MPU (IRQ).

The MPU will not respond to an Interrupt Request while the interrupt mask bit is set (1= 1).
Normal execution of the program continues until the interrupt mask bit is reset (1= O)enabling the MPU

to respond to the Interrupt Request.

D
Execution of the current instruction will always be completed before the MPU responds to

an Interrupt Request. The response of the MPU to the Interrupt Request may begin on the completion

of the current instruction. Alternatively, one more instruction in the program may first be executed, due

3-5



to the look-ahead capability of the MPU described in Section 3.3.8. The Response of the MPU to the
Interrupt Request then proceeds as follows:

1. Saving the Status 9

2.

3.

Provided the last instruction executed was not a WAI instruction, the status of the MPU

is saved in the stack, as described in Section 3.2. The value saved for the program
counter is the address of the instruction which would be the next to be executed if the

interrupt had not occurred, If the last instruction executed was a WAI instructio~$~~

address of the next instruction is not saved since PC and MPU status were #Y~~#dy

saved by the WAI instruction in preparation for an interrupt.
.-.,.t~,i,.~,\I>&t,,~.-,,.s..

Interrupt Mask
>,$IL$$.i>.‘?T$:a
s:\,,,. \\..:>t.J. .

>*),, ,p

The interrupt mask bit is then set (1 = 1). This prevents the MPU fro,@~&J#onding to

further interrupt requests until the interrupt mask bit has been clear~d$$execution of

programmed instructions.
::1$4,;‘...‘i!,,,

t:~$..,$’\\i,

Internal Interrupt Pointer and Program
...~~....:2,$:,:;.$+,,,+I,* ,.,~,:,,’v...f,:.,>~,+~.>.....~~\.!;.;

The program counter is loaded with the address stored in t~$~Q[ynal interrupt pointer at

locations “n – 7“ and “n – 6“ of memory (see Figure 3-3~~k~PU then proceeds with

execution of an internal interrupt program, which b~m,s with the instruction currently
‘,.6$,.

being addressed by the program counter. The i~@~finterrupt pointer is selected by
logic which is internal to the MPU. At the poi~~~~tisexecution of the internal interrupt

program begins, no distinction will have be~ %@e regarding the source of the interrupt
request. In a system in which there i~,;me than one possible source of interrupt

request, the internal interrupt progra~,fiu$t include a routine for identifying the origin of

the request. In a system composq.~~ihe Motorola Microcomputer Kit, this routine

would consist of a programmed i~~e’kgation of the addressable registers of the PIAs,,\+,..
and ACIAS, in order to ident~,#~t,he’peripheral device which has requested the interrupt.

., $~.~?
a,,..

‘lil,,.**?.,.C.*.,. . ,,,
<~~, ‘, . ,i.?~

~t$’” ,, ‘ ‘::+.
:t~i,,Si’~ “

3.3.5 WAI — Wait lnstrucg,*~J#”
~t<j\Y.y,‘..:::., ,..~

During executi$~$~,~e WAI instruction, the status of the MPU is saved in the stack, as

described in Section 3J2~,~@’’”’value saved for the program counter is the address of the WAI

instruction, plus one. {~”] ‘
Executi@$~”~he WAI instruction does not change the interrupt mask bit.

If th~}gte?ti’pt mask bit is set (1= 1), the MPU cannot respond to an interrupt request from

any periphera~~~y?~e. Execution stops after MPU status is saved and can be resumed only via a
Non-Mas~$T@$mterrupt or a reset interrupt,

+j~~~fhe interrupt mask bit is in the reset state (1 = O), the MPU will service any interrupt
requ$s~ ~$~ich may be present. If the’ Interrupt Request input is in the high state, execution will be

s~~~,~~tied, and the MPU will wait for an Interrupt Request to be signalled. If an Interrupt Request is

+SsQWlled by the Interrupt Request input changing to the low state, the interrupt will be serviced as

~isviOUSly described: the interrupt mask bit will be set, the program counter will be loaded with the
address stored in the internal interrupt pointer, and execution of the internal interrupt program will

begin.

3.3.6 Manipulation of the Interrupt Mask Bit

The interrupt mask bit is affected by execution of the source language instructions SWI a

and RTI, and by the servicing of an interrupt request from a peripheral device, as has been previously

3-6



described. The interrupt mask may also be manipulated by the use of any of the following instructions:

B

● CLI — clear interrupt mask bit

o SEI — set interrupt mask bit
o TAp — transfer accumulator A to processor condition codes register

The state of the interrupt mask bit can also be affected as a result of the following instruction:
● TPA — transfer the processor condition codes register to accumulator A, .’:~.:$,,.~
During execution of the TPA instruction, the condition codes H, 1, N, Z, V, and C, ~n,~$~~

positions 5 thru O of the processor condition codes register are stored respectively in bit posi,t~’~~$’

thru O of accumulator A. Bit positions 7 and 6 of accumulator A are set (i.e. go to the 1 st~{$~~~%er

execution of the TAP instruction, the state of each of the condition codes (H, 1, N, Z,b+~{~~$;Willbe
whatever is retrieved from the respective bit positions (5 thru O) of accumulator A. ~~i!... .,::’.:;*,$’?s“+t’,,,‘\

‘l:*:\i,,,:;iJ’
$$, ..$,~~

3,3.7 Special Programming Requirements !:~~,i;>,,$]k..
,..f>),,?*>“~.:C>.

‘.:+:>)*#,,,*$’

A comprehensive program should make provision for the follow$&~9~ecial requirements:

(a) Pointers:
.,+-!.,,..>,,,:$+$.,~~i$:~.-$.,~.,,,

The program should place the addresses of the rq~~~.+~nd interrupt routine in the

respective pointers (see Figure 3-3) at the high-a@N~~ end of memory. The addres-

ses would usually be placed in the pointers by u@~~$He FDB assembler directive in the$,,,t(,,,:.~’
source program. >~,.,,,:t,?: .>

(b) Reset and Interrupt Sequences: e~~,’”~.

The sequences of instructions to ~t~~~ressed by the Reset pointer, the Non-‘:,,>:.X,,,>C*<*..
Maskable Interrupt pointer, the SO- Interrupt pointer, and the Internal Interrupt

D

pointer, should be provided inthe~pr~gram.

(c) Input and Output: ~~,,

The program would nor~~k:tificlude provisions for inputs and outputs relating to

peripheral devices. In @“~#ammable system composed of the parts of the Motorola

Microcomputer Fa~~~{$eJ!nput and output routines would involve reading and writing

coded data frorn~~{fito the addressable registers of the PIAs and ACIAS. The input

and output r~p~~hq~tiould normally be reached via conditional branch instructions in

the lnter~<$kk$~x~upt Program.
\:r.$~.~%~,,>?,$.,>>,,.<$,,?,?

3.3.8 Look-,A~~,@ Feature

Th#~M# responds, at the completion of the instruction being executed, to any of the

following s@$~t#>
.t,\{:*:#~lt

,,..x\\,,,,),J.~:.*. :+‘$* Non-Maskable Interrupt.,,....),,,~,\J?,.~.~’’+;,~$..>,,i..,,.,~> ● Interrupt Request (when the interrupt mask is in the reset state).~.~:..,~y<~.x.:.,;$...~
-,)$’i.,\

,, .Y;l”e::~:,!s:,\ However, if the interrupt occurs during the last cycle of an instruction, the look-ahead to the

fl~xt instruction feature will mask the interrupt until the completion of the next instruction.

3.3.9 RTI — Return from Interrupt

The source language instruction RTI assembles into one byte of the machine code.

D

Execution of this instruction consists of the restoration of the MPU to a state pulled from the stack.

The information which is obtained from the stack provides for the numerical content of the

registers of the programming model shown in Figure 2-2. The operation is the reverse of that

represented in Figure 3-2. Seven bytes of information are’ pulled from the stack and stored in

3-7



respective registers of the MPU. The address stored in the stack pointer is incremented before each

byte of information is pulled from the stack.

After execution of the RTI instruction, the state of each of the condition codes (H, 1,N, Z, V,

and C) will be whatever is retrieved from the respective bit positions (5 thru O) of the applicable

memory location in the stack. In particular, it should be noted that the interrupt mask bit (l-bit) maybe

either set or reset by execution of the RTI instruction. ..!.,

3,4

subroutine. Use of a stack allows subroutine calls when in a subroutine (subrou$%~&$ting).
.,, ,‘,.$..,*.’

3.4.1
~\?\ .~1.i,,.

Call Subroutine (BSR or JSR)
~:,:$.,,. :\iA,

ckf@?x’~’P.;.,}:$,,.it.~s’,\ . ~,,,.
A return address is saved in the stack during execution of the Qw$fie code corresponding

to either of the source language instructions BSR (branch to subroutine~~~$~’h (jump to subroutine).

The return address is stored in the stack in accordanc@”~~h the scheme shown in Figure

3-4. Before storing the return address, the stack pointer conta~W{R@ address of a memory location
‘‘~$.?’$’~’”$”

represented in Figure 3-4 by “m.” The stack, if any, extendq,,#~h:Memory location “m + 1” to higher
Y*,

locations. The return address is stored in two bytes of ~e#&.y, at locations “m – 1” and “m.” The

stack pointer is decremented after each byte of the [~~~qa address is pushed into the stack.

For either of the instructions (BSR or J~~~t~ return address saved in the stack is that of

the next byte of memory following the bytes of c*,&fich correspond to the BSR or JSR instruction.

Thus, for the BSR instruction, the return addresq isequal to the address of the BSR instruction, plus

two. For the JSR instruction, the return ag{~ess is equal to the address of the JSR instruction, plus
three or plus two; according to whether~~~~n$lruction is used with the extended or the indexed mode

of addressing.
,~,)..,,,,,..,.>.,\,y r.,.+,*,Jt~*t:lli$\l-.#\?:*,%\:?,F.*‘.:{\.+),,

3.4.2 RTS — Return Frq@/wbroutine
++>,,3,+>

I1,
[

m –3

m-2

m-1

m

m+?

m+2

m+3

Before

i~p ‘
= Stack Pointer

K SP

B
—

RAH

RAL

I

i After I

-

I

RAH = Return Address, Higher Order 8-Bits

RA L = Return Address, Lower Order 8-Bits

FIGURE 3-4. Saving a Return Addreea in the Stack

3-8



9

B

B

3.5 DATA STORAGE IN THE STACK

The source language instruction PSH is used for storing a single byte of data in the stack.

This instruction addresses either register A or register B. The contents of the specified register is

stored in the stack, in accordance with the scheme represented in Figure 3-5. The address contained

in the stack pointer is decremented.

Conversely, the source language instruction PUL retrieves data from the stack. Th,~$,i~
instruction addresses either register A or register B. The address contained in the stack poi~~r~~””””

incremented. A single byte of data is then obtained from the stack and loaded into thes~,~jbd

register. The operation is the reverse of that represented in Figure 3-5. ,,,:.ai,,3.P>~~:.:.:,{,,!.,..:~<b,.~,,<,$,’,.,,, ,(+<.;:...
~!;..%.?~~*,V

*..\,J;,-3s{,‘~*,$**,,,
3.6

..,’$4.,
REENTRANT CODE

“,!.~,.,>“:.,.
-{;)i$$,:\*$,. ..+. .’:/,::;,,,.’:?.;

Reentrant code is an attribute of a program that allows the pr,~~~”~o be interrupted

during execution, entered by another user, and subsequently, reentered a${~~~aint of interruption by
the first user, thus producing the desired results for all users: a program’~~@~n intermediate state of

execution that is totally restorable when it is reentered after an in$~’~~:ption.

The instruction TSX allows data on the stack to be @@@lated by the indexed mode of

addressing. +* l\ :*‘...<},+3,*S,k~.- :*,
~>i;.lip.?:-~.f” ,.,.~,.,,48~.,;,

3.7 MANIPULATION OF THE STACK POIN~f~j ‘“*
~:~~\~\\.,.J*:,:s~

The address saved in the stack pointe@~~&ffected by execution of the source language

instructions (SWI, WAI, RTI, BSR, JSR, R~S, .TPS~, and PUL) and also by the servicing of a

Non-M askable Interrupt or an Interrupt Re~$&t from a peripheral device, as previously described. In

these operations, the stack pointer is cw~,@a~ed with the storing and retrieval of information in the

stack.
,w,:i~,S’,’S,,,\.~. .x,+‘:$<,8t \

The address in the st~{~;$&~ter may also be manipulated without storing or retrieving
information in the stack. This ~s’~$~~kd out by the following source language instructions:

● DES — decre,w;%l~~ack pointer

● INS — incr:~~$~$*stack pointer

o LDS —,:~.~~+t$e stack pointer
● TXS -~:~,$~sfer index register to stack pointer,,.:.,$

mt2

l!

m–2

m-1

~sP m
——

T

m+l

x
%? 2

:

[ i ‘iBefore

RTSP
——

ACCX

x
:

;

After
1,

SP = Stack Pointer

ACCX = Accumulator A or B

FIGURE 3-5. Data Storage in the Stack

3-9



The use of any of these four instructions can result in the stack being other than a block of

successive locations in memorv.
The content of the s~ack pointer is also involved in execution of the following instructions:
● STS — store the stack pointer
● TSX — transfer stack pointer to index register
The instruction TSX loads the index register with a value equal to the contents of the stg~k

pointer, plus 1. The instruction TXS loads the stack pointer with a value equal to the contents,,q~$@&
index register, minus 1. This is in accordance with the operation of the stack pointer during e~{;~jbn
of the instructions SWI, WAI, BSR, JSR, or PSH, or during servicing of an interrupt from ~~~[~fieral
device; in which case the stack pointer is set to one less than the address of the last b~~$f~~~d in the
stack.

.~$qF’,,::
,,i,.$s$~,,,:>,,;p’,,,$,,$,,.,.,.,\t. ,,.*:!,,\ ~’?.+{w..?.’.,’:;,;*.>:.,?L,\.?$.:$,,::,.,N>..\.1!**$,b.~{.~i.k,, ,.,,{:?,.~11,,~R:,l,$..

!*“s,>\*~,.*..},:x$,..6?1“*$+.:i,:tp:..~;.ii‘~.!l..,.,k>..,,-,*’.,~pt,,...,,.,,..’...

a

3-1o



o

D

D

CHAPTER 4
M6800 MICROPROCESSOR ADDRESSING MODES

4.0 ADDRESSING MODES

The assembler scans the operator and operand to determine the proper addressing mod~til,
The addressing modes are: ...bjJ.,y,>,..,,

~,+’,’.o ~~;., “
● Dual Addressing

-.**?.,!:.,<4~ ~\\.\i\>?,.,l!.~.:~+“*>>>i,.\.
0 Accumulator Addressing

??,i,,.<,,+.is\:A,$jti;%*
. Inherent Addressing

J\+.,..,,$> -
+.’.* *\*:~:”‘~~~.l~,!$:,+.,

. Immediate Addressing ‘*.:$:,$P,..4;.1,::&,~
Jir> J.~><~,,

e Relative Addressing
“~.*J\.:.:,.tj~’:$, .,.s

● Indexed Addressing
,$,,->\:,\:::,\i. .?,,,,<,‘i>,N b,i*’.,!~,;.,..s>

. Direct and Extended Addressing ‘k,:+
,, ‘:g#’;+
‘iy+>..,.,S..,.-‘. ,.s‘~k‘($~~’.:i.~.,::,,*~,!\,>

4.1
~t}.>.

DUAL ADDRESSING
.+$,<<,..*. ;:,:.,:*:.~:!,,,,.>,,~3,1+>.....*..~.$**,:y.~*:<?.;,&\t\\~\4

Eleven of the executable instructions require add~e$~~g~ of two operands in the operand
field. These instructions are indicated in Figure 4-1 by th~ c~mn headed Dual Operand. For all of

these operators the first operand must be either accumti~~~or A or accumulator B. This is specified
respectively by A or B as the first character in the ope~~$d field, the second character in the operand

,:,.*.~!+sh+,:~1:
field being a SPACE. .,?>J\$*<;:,~+.\*.~,.,

For dual addressing the specification o’~~efirst operand (either A or B) is separated from
that of the second operand by one or morl~~SP~CE characters.

The second operand is spec~~d+n the operand field in accordance with the rules for

immediate, direct, extended, or index@~~8tessing (as subsequently defined); depending on which

modes of addressing are valid for t@#.&~ividual operators. (For nmemonic operators which employ

dual addressing, it is permissibl~’%~~fifi the SPACE beWeen the operator and the first operand field‘~+~,.
— LDAA LABEL).

‘.k),, ~.*<* .:,,$;.‘~..,.;.$\,~,.+:,<t(sv~~;.~$,!.“y:~;., ,
.$.:,,.,,,,.,“f\<:t.,.\*!:J,*,.~.~A\.:t,,.

4.2 ACCUMQ~~& ADDRESSING (SINGLE OPERAND)
.,i~+’<~,,$

Thi~@~n o$~he operators address a single operand from the operand field and, thus, can
address eithefi’~~~timulator A or accumulator B in the microprocessing unit. These operators are

indicated ,Q$~~&;column headed ACCX in Figure 4-1. This mode of addressing is specified by writing-~.,+,~‘$+%
an oper%~~~~ld consisting only of the single character A or B (corresponding to accumulator A or

accu@ul@~br B). For this type of addressing, it is then permissible to omit the SPACE be~een the

o~~~~~~’and the operand field.
k<i;,,.+,;Wx.$,,,..*.h\F.:.’ For this type of addressing, the assembly of a source instruction results in one byte of

‘ktiruction in the machine language. For operators PUL and PSH, the accumulator mode is the only
valid mode of addressing. The remaining eleven operators capable of this mode of addressing can

alternatively be used with extended or indexed addressing.

4.3 INHERENT ADDRESSING

In many cases, the mnemonic operator itself specifies one or more registers which contain
operands or in which results are saved. For example, the operator ABA requires Wo operands which

4-1



are located in accumulator A and accumulator B of the microprocessor. The operator also determines

that the result of execution will be saved in accumulator A.

For some executable instructions, all of the information which may be required for the
a

addressing is contained in the mnemonic operator, and no operand field is used in the source

statement. There are 25 such instructions. These are indicated by the column headed Inherent in

Figure 4-1.

Assembly of this type of source instruction results in only one byte of machine lang~~~~

code. Some other operators which contain addressing information inherently in the mnemowg~de

also require further addressing or operand information which is then placed in an op~@&*@ld.

Examples are the operators CPX, LDS, LDX, STS and STX.
,{.>,\

,;),$,ll.t?;.,$..,.*!:$,, ,s$:’

4.4 IMMEDIATE ADDRESSING

The operators with which the immediate mode of addressing i$~>wlsslble are indicated,>,$.“>~~*.

by the column headed Immediate in Figure 4-1. This mode of addressin~$~t~cted by beginning the

specification of the corresponding operand (in the operand field of a so~~ktatement) with the pound

character “#”.
!.1,*.\ ,~~y,?,.,$~,,{.{?$:.1.,..

JSR
LDA
LDS
LDX
LSR
NEG
NOP
ORA
PSH
PUL
ROL
ROR
RTI
RTS
SBA
SBC
SEC
SEI
SEV
STA
STS
STX
SUB
Swl
TAB
TAP
TBA
TPA
TST
TSX
TXS
WAI

20067
● **** :
.. *** 4
● ** 34*
● 00 980

X* 23450
● 3456,

34560
;o 0670
2,*67.
9**** 2

x*2345*
4 . . . . .

40000*
2** 67*
2ea67
● **** 1;

● **** 5
● 9*** 2

x. 2 345.

● ***O 2
● 8,00 2
● **** 2

XO 0456.
● * 567.
● e 5670

X9 2345
● **** 1>
● ***. 2
● *0** 2
● e*** 2

● *** 2
;. ,67
● **** :
● **** 4
● **** 9

NOTE : Interrupt time is 12 cycles from the end of
the instruction being executed, except following
a WA I instruction. Then it is 4 cycles.

FIGURE 4-1. Instruction Addressing Modas and Execution Times (Times in Machine Cyclas)

4-2,



With the immediate mode of addressing, the operand field of the source statement either

B

contains the actual value of the operand, or it includes a symbol or an expression which has an
algebraic value equal to the value of the operand. The operand may be specified in accordance with

any of the following formats:

# Number

# Symbol

# Expression
‘:?.},.~t,c

l.~$~+x.,:::,
# ‘c ,*S,.{:~t~.,,{ .5:*‘$
In the first three of these alternate forms, the assembler wilt find or compute a ~,~~~~~al

value of the operand. For any executive instruction in the immediate mode of addressing ~@~&~t’CpX,

LDS, or LDX), the numeric values must be an integer from Oto 255 (decimal). For the o~~$~~rs CPX,

LDS, or LDX, any value from O to 65535 (decimal) is valid.
x?~c:;.,si,,.,.<i,,,.lYI* ~+~.*;LL.,

In the last of the alternate forms (#’C), the apostrophe instructs the ~~~~rn~~er to translate

the next character into the corresponding 7-bit ASCII code. The ASCII cod~w~~{ained is then the

value of the operand. The single character “C” can be any character of thq;NQ~ilcharacter set with a

hexadecimal value from 20 (SP) thru 5F ( ). :$~~+>?

For the immediate mode of addressing, the assembl&m@se~s the actual value of the.!*,*+,?,~:.,,t.
operand into the machine code. Except for the three operators (G~~~~&DS, and LDX), an instruction in

the immediate mode is assembled into two bytes of machin,~}~~kdand the value of the operand is

entered in the second byte. When it is a number, the ope~~n~~{$ entered in the memory in unsigned
8-bit binary code. When it is an ASCt I character, the corrq$mding 7-bit ASCII code applies, using bits,,$$.=.!,,.> s
O-6 with bit 7 set to zero.

,~?~, :$
:6:.,***,.,..

For the three operators (CPX, LDS, ~$,~~xj used in the immediate mode, the source

D

statement is assembled into three bytes of mach{n~code. The numerical operand (which can have

any value from Othru FFFF) wilt be entered i~;{hesecond and third bytes. The second byte will contain

the most significant part of the operand ~~thb third byte wilt contain the least significant part of the

operand. Both parts are entered into t,~:~.e@ective bytes of the memory in unsigned 8-bit binary code.

The operators (CPX, LQ~~~W~DX) in the immediate mode are not normally used with an
operand in the format #’C. How#~~k~ln such a case, the assembler would place “the ASCII coded

character “C” in the third b~&~~~@he machine code corresponding to the source instruction.

When the imrn,~a@ mode of addressing is used, the numerical address is in effect that of
the second byte of mac~ln~~ode which results from assembly of the source instruction. Data flow for

the immediate addr~~~@~’rnode is shown in Figure 4-2.
~!,,. .,.~+

MPU

4“
RAM

PROGRAM

MEMORY I

MPU

F
ACCA

m

RAM

Pc

w

INSTR

DATA

GENERAL FLOW

PROGRAM
MEMORY I

Pc = 5002

w

LDA A

25

EXAMPLE

FIGURE 4-2. Immediate Addressing Mode Deta Flow



4.5 RELATIVE ADDRESSING

For the relative addressing mode to be valid, there is a rule which limits the distance in the

machine language program from the branch instruction to the destination of the branch. The rule a
which applies to the relative addressing mode is that the address of the destination of the branch must

be within the range specified by:

(PC+2)- 128< D<(PC +2)+127 *,\
where

*’X,l,$J,$<,.,,.,’~,’$:.

PC = address of the first byte of the branch instruction.
‘!i.,,,1+ts.,

.ss$.”‘I:.,.~, ,r,,!*:\~**

D = address of the destination of the branch instruction.
.. .,

‘i?3,’~3<3,;)$;’,,*\t.~!...4:,.,)

When it is desired to transfer control beyond the range of the branch instru@~$~~his can

be done by using JMP (unconditional jump) or JSR (jump to subroutine). These instr~~~q~tio not use

the relative mode of addressing.
‘~>::$:<,,,.>,..,..,.,.*

The assembler translates a branch instruction into two bytes of t,~~~,achine code. The
....,,yt.,:,i~‘

second byte contains a relative address. This is stored as a number in 8-bit$~&~complement, binary

form, with a decimal value in the range of – 128 to + 127. These numbers ~F&$~ond to the limits of the

range of a branch instruction, as described above.
,.l,,,,.$:+{:.}>,,.\,L\.>.,.>‘?:>,,

The relationship between the relative address and the ~~k~yte address of the destination

of a branch instruction is expressed by:
.$t?b$l..,~j>.1 ‘?;*~}:+

D=(PC+2)+R
,$,,~~.,~~!.}j,i$q.,..’,.,:,;:~~.}.,!})-’

where: ,!t:. **,$,~e$ -$,,

PC = address of the first byte of the bra,@~hstruction

D = address of the destination of the Q{$~@ instruction

R = the 8-bit, two’s complement, binaw:~amber, stored in the second byte of the branch~:..
instruction. ,,:,.. “

The relative addressing mode ~~~vailable only to the conditional branch instructions, the 4
unconditional branch instruction (BRA)~.5#~<,the branch to subroutine (BSR). None of these source

2?,,,‘~~.,
instructions can use any other of th~~~~aral modes of addressing. The three-character mnemonic
instruction, therefore, is sufficient. t&d’&l&’rmine when the relative mode of addressing will be used for~\$,\~~,..’i:+.
the assembler. An example of t~;%% flow for the relative addressing mode is shown in Figure 4-3.

,,1~:.>,.~:
,,!,:{*O.~~:+,.~:+~,$t,,*,

4.6 INDEXED &~@kSING
,,

., ~~~~++’.’The lnd@&~~lumn of Figure 4-1 indicates the instructions for which indexed addressing~\]%\
is valid. (,,:$J,$:;}

Wi~~!~~~g mode of addressing, the numerical address is variable; depending on the

contents of,,,%j~ndex register. The current address is obtained whenever it is required during the

execution ‘~~$a ‘program, rather than being predetermined by the assembler as it is for the other,.>,:.<.$~.~.:,$
addr~al~,modes. The operand field of the source statement contains a numerical value which, when

ad,@$&$~$hecontents of the index register during execution of the program, will provide the numerical

.~~~~~~s. Alternatively, the operand field may contain a symbol or an expression which the assembler
‘T@~le to replace by the value which is to be added to the contents of the index register. An example of

the indexed addressing mode is shown in Figure 4-4.

In indexed ~ddressing, the data for obtaining the numerical address maybe written in any
of the formats:

x
,x
Number,X

Symbol,X

Expression,X

4-4



B
MPU

&
RAM

PROGRAM
MEMORY I

MPU

G

HINZVC

RAM

PROGRAM
MEMORY I

I

“F

MPU

m
RAM

I

ADDR 405

Pc = 5006

OFFSET <255

GENERAL FLOW

PROGRAM
MEMORY I

@

LDAB

5

EXAMPLE

‘~~single character X informs the assembler that the indexed mode is to be used (the character X
being reserved to denote the index register).

The format X, when used alone, instructs the assembler that the address of the operand is

identical with the contents of the index register. This format has the same effect on the assembly as if
O,X had been written.

If a symbol or an expression is used rather than a number, the assembler will find or

compute a numerical value of that symbol or expression. The source program must then include other

statements which define a numerical value for the symbol or which enable the assembler to compute a
numerical value for the symbol or expression. Only values from zero to FF (hexadecimal) are valid.



This value is added to the contents of the index register during execution to obtain the numerical

address as shown in the following formula:

D = numerical value + X d
where

X = contents of index register

D = numerical address

For indexed addressing, the source instruction is translated into two bytes of the mac,$~kj~

code. The second byte contains the number, in unsigned 8-bit binary form, which is adde@~~&@

contents of the index register during execution of the instruction. The number thus obt@~$$N’the

numerical address (in accordance with the previous formula).
,%;:<.t<,~..$;,$:,.$* ‘,,,.{s., .:\7”5:’

.*$.?~,*l,i~:.,,.?.*.”\,.,?,:,<.7?-.(;V‘ ‘{~}....&x\,

4.7 DIRECT AND EXTENDED ADDRESSING k::. ‘q)pY
..>,“:~,
?s;:~t.,v.)\,i:,$..,,t:’::v~,.

In direct addressing, the source instruction is translated into t@&5*s of machine code.

The second byte will contain the address in unsigned 8-bit binary for,~.~~}~~?

In extended addressing, the source instruction is transl~~~&$~to three bytes of machine

language. The second of these bytes will contain the highest 8 bit$w~e address. The third byte will

contain the lowest 8 bits of the address. The contents of the se~$n~~~’~d third bytes will both be coded

in unsigned 8-bit binary form.
.’3;..,,ik,~f,~;,t~.,,\tt..<\.#,..,.

For both direct and extended addressing, th~$ddr&ss, which is placed by the assembler

into the second or third bytes of the machine code, ;~t~~absolute numerical address.

As maybe seen in Figure 4-1, there are ~~%~~1 instructions for which the extended mode
of addressing is valid and not the direct mode. Fo#@’;$ke instructions, when using any of the number,

symbol, or expression formats, the assemble$ wil!%elect the extended mode of addressing, regardless

of the value of the numerical address. Thq~5ti~rce statement will be translated into three bytes of the 9

machine code.
“At. ~’..:?.:(.,..........,.\.,:\.~....~.,;.tkit’.

For those instructions ,~k~may use the direct mode of addressing as well as the

extended mode, the assembler Wt&~~J{he mode according to the following rule: The assembler will,,,,.\>Jlif(>,
select direct addressing if the ~u~,alcal address is in the range from Oto 255 (decimal) and will select

extended addressing if thq’Wu@~?ical address exceeds 255 (deci real). Examples of the direct and

extended addressing w~>~re shown in Figures 4-5 and 4-6.
.-.

Pc

RAM

DATA

PROGRAM
MEMORY

ADDR = 100

RAM I

PROGRAM
MEMORY I

&INSTR

ADDR

Pc = 5004

s

LDA A

100

ADDR = 0<255

GENERAL FLOW EXAMPLE

FIGURE 4-5. Direct Addresing Mode Data Flow

4-6
.



D
MPU MPI 1

RAM II “- RAM I

. . “

m=
ADDR = 300

3

45

9
PROGRAM

MEMORY

INSTR

Pc ADDR

ADDR

PC = 5006

ADDR >256

GENERAL FLOW



4-8



D
A.1

The

B

APPENDIX A
Definition of the Executable Instructions

Nomenclature

following nomenclature is used in the subsequent definitions.

(a) Operators

() = contents of
+ = is transferred to

t= “is pulled from stack”

J= “is pushed into stack’
= Boolean AND

6 = Boolean (Inclusive) OR

ACCA =
ACCB =
ACCX =

cc =

lx =
IXH =
IXL =

Pc =
PCH =
PCL =

SP =

.$.\*4~\.:.?>

Index register, 16 bits “’~;~~’$ri
Index register, h~~he~brder 8 bits
index register, ~~~~r order 8 bits

Program ~$~f~~ 16 bits
Progra~~~$~~er, higher order 8 bits
Progq#~j~bunter, lower order 8 bits

,,. ‘.
~&&~$ointer

SPH ‘%~i$k Pointer high
SPL ,.J,:$~~j$tackpointer IOW

(c) Memo~,~~Addressing

M ,:$F., 2= A memory location (one byte)
,,:$$~’ = The byte of memory at 0001 plus the address of the memory location indi-

,. ?,$‘“J.’*..?{..,, ., cated by “M.”
, ,“t)~’~~el = Relative address (i.e. the two’s complement number stored in the second byte

s<”“ ,,.”?t:,.: ,,\, of machine code corresponding to a branch instruction).
d~b*$*p*?

.,~~,$w,{d) Bits O thru 5 of the Condition Codes Register
.~,$~:*tx~.,ti,,t
k>,y.s$.,. c = Carry — borrow bit — O

v = Two’s complement overflow indicator bit — 1
z = Zero indicator bit — 2
N = Negative indicator bit — 3
I = Interrupt mask bit — 4
H = Half carry bit — 5

(e) Status of /ndividua/ Bits BEFORE Execution of an /instruction

An = Bit n of ACCA (n=7,6,5,...,O)
Bn = Bit n of ACCB (n=7,6,5,...,O)
lXHn = Bit n of IXH (n=7,6,5,...,O)

A-1



lXLn = Bit n of IXL (n=7,6,5,...,O)

Mn = Bit n of M (n=7,6,5,...,O)

SPHn = Bit n of SPH (n=7,6,5,...,O)

SPLn = Bit n of SPL (n=7,6,5,...,O)

Xn = Bit n of ACCX (n=7,6,5,...,O)

(f) Status of Individual Bits of the RESULT of Execution of an Instruction

(i) For 8-bit Results
*,\*’X,l,

Rn = Bit n of the result (n =7,6,5,...,0)
$J,$<,.,,.,’~,’$:.‘!i.,,,1+ts.,

.ss$.”‘I:.,.~, .,,*,.,.*,+..1:,.
This applies to instructions which provide a result contained in a sin~~~h~~$bf

memory or in an 8-bit register.
~~:,&.\,y<s.~F*,,‘,,1:,.,,,,,,+;,:.’?

(ii) For 16-bit Results
,,,:.. ... -.,L,:4,..,,\.~~~,,F*

RHn = Bit n of the more significant byte of the result
.$:,s~.:ka.z)qp,.,,.’
t$yk,,a#,~.,,.,.,

(n =7,6,5,,..,0)
,..\.~x. .,

.:\&\*,.’::..

RLn = Bit n of the less significant byte of the result
~t>.s$:~..:>~$1,Y.qci,,:1,+~. ~.,$i,..,,.$y’,Y

(n =7,6,5,..,,0)
+,#\+.>]

“,li*,‘:.~j-~ll,.:)$;.*
.,=i ,),~~...

This applies to instructions which provide a re~ult~ntained in two consecu-

tive bytes of memory or in a 16-bit registe~$?$~
. ..>,,,,,::.:1~.“~’.$>-.*\,“:.:</,,~,...,?..‘~

~kkjil:“
A.2 Executable Instructions (definition of) ,\,\:>$’J\k::”

:~~,’.<.
Detailed definitions of the 72 executable instructions @W~$’source language are provided on the

following pages.
*,,~j> :,?’Ji.,,,..,{k(,:\ ,+1,,

‘:!~,~:~’.!~~.il!~~,$:+l\4..,.

A-2



APPENDIX A

D Definition of the Executable Instructions

A.1 Nomenclature

The following nomenclature is used in the subsequent definitions.
~~*~.*....... $,*,f!’}~~..(,!~tt.,:*,

(a)

(b)

(c)

Operators

() = contents of
+ = is transferred to

t= “is pulled from stack’

t= “is pushed into stack”
= Boolean AND

6 = Boolean (Inclusive) OR

@ = Exclusive OR
= = Boolean NOT
Registers in the MPU

ACtiA
ACCB
ACCX

cc
lx
IXH
IXL

Pc
PCH
PCL

SP
SPH
SPL

——
——
——

——

=

=
——

=
——
——

——
——

=

——

Accumulator A
Accumulator B

Condition codes register ~X,$,+l,]

Index register, 16 bits “:~:~
.+~:;.-,..,*)

Index register, hig,@r @?der8 bits
Index register, l@Y~forder 8 bits,.
Program co:@~*~* 6 bits
Program .~~$er, higher order 8 bits
Progr~t~:W&nter, lower order 8 bits

St~*,,~#i’nter

A memory location (one byte)
The byte of memory at 0001 plus the address of the memory location indi-
cated by “M.”
Relative address (i.e. the two’s complement number stored in the second byte
of machine code corresponding to a branch instruction).

bit — O
.$<:*,.?,. .-

~.,.,
,.’ v = Two’s complement overflow indicator bit — 1

z = Zero indicator bit — 2
N = Negative indicator bit — 3

I = Interrupt mask bit — 4
H = Half carry bit — 5

D
(e) Status of Individual Bits BEFORE Execution of an Instruction

An = Bit n of ACCA (n=7,6,5,...,O)
Bn = Bit n of ACCB (n=7,6,5,,..,O)
lXHn = Bit n of IXH (n=7,6,5,...,O)

A-1



lXLn = Bit n of IXL (n=7,6,5,...,O)
Mn = Bit n of M (n=7,6,5,...,O)

SPHn = Bit n of SPH (n=7,6,5,...,O)

SPLn = Bit n of SPL (n=7,6,5,...,O)

Xn = Bit n of ACCX (n=7,6,5,...,O)

(f) Status of /ndividua/ Bits of the RESULT of Execution of an Instruction

(i) For 8-bit Results ~~*~.*.

Rn
...... $,*,

= Bit n of the result (n =7,6,5,...,0)
f!’}~{,?.(,!~tt.,:*,

,,,?$ ‘,+
[!~’ ‘*J$,2,*::J?

This applies to instructions which provide a result contained in a sin~l~h~$~$f

memory or in an 8-bit register.
,!: ,,.,,>.t,,..;,.t,.s‘..‘,.<,,:$

(ii) For 16-bit Results
,,$ ,.:,\,:r*...,.,>$,,’,..tl,+\.$).$)..~},i:;P

RHn = Bit n of the more significant byte of the result
>i~.ii.. .\>:,,\ ,y,t$ .,,:::l~.,).

(n =7,6,5,...,0)‘,
.~<::k,~~‘.,,T$~!$~

RLn = Bit n of the less significant byte of the result ,,’~1~
(n =7,6,5,..,,0)

‘$,.,$,.,i<~,:;,*,, . *~,?.:.,‘:.:.~<,,?’~~’.:*,,,,.<<b
This applies to instructions which provide a re~u~&’”ntained in two consecu-,$:. .!>
tive bytes of memory or in a 16-bit regist$~.~~>

/...’ ~+.s,.kl..

Detailed definitions of the 72 executable instructions @~~esource language are provided on the
following pages.

fib .i~+i~h,.?*:$+.$,.... , ,,,$,$,,.’::l?\+i.l.::l\\

A-2



Add Accumulator B to Accumulator A ABA

B Operation:

Description:

Condition Codes:

o

ACCA e (ACCA) + (ACCB)

Adds the contents of ACCB to the contents of ACCA and places the result in

ACCA.

H: Set if there was a carry from bit 3; cleared otherwise. ~~*~.*.
1: Not affected.

...... $,*,f!’}~{,?.(,!~tt.,:*,
.;*],* ~~..?,.

N: Set if most significant bit of the result is set; cleared otherwise. .$. ““p~>~
‘>...,:,%3>%

Z: Set if all bits of the result are cleared; cleared otherwise.
“,\d,>:~>.,.$~l~’...!~’.7*s,i!. ,,,,,.:i~!.

V: Set if there was two’s complement overflow as a result of<fi~’deration;‘.:,x,+,;’..
cleared otherwise. :.,1~.,,+.,..,4.’.$.:’,?,iii,~.,..$,,,..,,,;

C: Set if there was a carry from the most significant bit ~f thtesult; cleared
,\:?,,+.\>:~i\

othemise. :x}+>,:~y.~>o,\>{$.t,~,b.+ .,ii,,\

A-3



ADC Add with Carry

Operation: ACCX e (ACCX) + (M) + (C)

Description: Adds the contents of the C bit to the sum of the contents of ACCX and M, and
places the result in ACCX.

Condition Codes: H
1:
N:
z:
v:

c:

Set if there was a carry from bit 3; cleared otherwise. ,:!$,
Not affected.

.i{~i,~.‘+s.\.**:,.j.:>J1.t~,.,.“
Set if most significant bit of the result is set; cleared otherwise,

>ix+,3’..‘~3*i,.->”,..’>.$ .4>.~t
Set if all bits of the result are cleared; cleared otherwise.

. y...,t:::/,,,..$,\.<,,:+:’
),. .<,<,’

Set if there was two’s complement overflow as a result of th~~~at[on;
;::;-*F‘:

,,~.,,,.ik.a’”,,,“‘
cleared otherwise. .t,~...:,>.,!.:?...x,,k,~..:.*.
Set if there was a carry from the most significant bit of ~~$$$~$ult;cleared

Boolean Formulae for Condition Codes:
.:>-~.+:,?l,{$\,,,.!?”,.,;:,.s~....>:~

Addressing Modes, Execution Yme, and Maine’Code (hexadecimal/octal/ decimal):
,.. \.j:2*
“.\{,:\.,,

(DUAL OPERAND)
>4

.}?...,,.,~“ix.,“t.%..,,,,,,},,.,.$:....

Number of
bytes of

machine code

2
2
3
2
2
2
3
2

Coding of First (or only)
byte of machine code

HEX. OCT. DEC.
I I

89
99

B9
A9
C9
D9
F9

211
231
271
251
311
331
371

137
153
185
169
201
217
249

E9 351 233

A-4



B

o

D

Add Without Carry ADD
Operation: ACCX - (ACCX) + (M)

Description: Adds the contents of ACCX and the contents of M and places the result in ACCX.

Condition Codes: H: Set if there was a carry from bit 3; cleared othewise.
1: Not affected. *,\
N: Set if most significant bit of the result is set; cleared otherwise.

*’X,l,$J,$<,.,,.,’~,’$:.‘!/.~1+ts.,

z: Set if all bits of the result are cleared; cleared otherwise.
\,$t,i/..:~‘%i~t,~,,*$,X*.S

*+);~,\.*$3
V: Set if there was two’s complement overflow as a result of th~$@rhtion;

cleared otherwise.
.\>“,.!tk’~ *,*A+!!

C: Set if there was a carry from the most significant bit of .K~F~.$tilt;cleared
!,,:,~~.

~:~.
otherwise.

“:?,~,’:,?!,,,..$<*’‘~:\\:,\,.\.\. ..s

Number of
bytes of

machine code

2
2

3

2
2

2

3

2

Coding of First (or only)
bvte of machine code

HEX.

8B
9B

BB

AB
CB

DB

FB

EB

OCT.

213

233

273

253

313

333

373

353

DEC.

139

155

187

171
203

219

251

235

A-5



AND Logical AND

Operation: ACCX + (ACCX) . (M)

Description: Performs logical “AND” between the contents of ACCX and the contents of M and

places the result in ACCX. (Each bit of ACCX after the operation will be the logical

“AND” of the corresponding bits of M and of ACCX before the operation.) 3

condition Codes: H: Not affected.
~~*~.*....... $,*,f!’}~{,?.(,!~tt.,:*,,,,?$ ‘,+

“1: Not affected. [!~’ ‘*J$,2,*::J?

N: Set if most significant bit of the result is set; cleared otherwise. ~~s~r”
. ‘2,,$. ..\:

Z: Set if all bits of the result are cleared; cleared otherwise. ,+:f$’,~.~~

V: Cleared.
~,{,t.<i\ .~,,~~,t.:>,,~.%~,.,,,.~..... ...... ‘~:::~

C: Not affected,
..\. :>$“+~~J\:s::.~‘.’L... .-

A-6



Arithmetic

B Operation:

Shift Left ASL

Description: Shifts all bits of the ACCX or M one place to the left. Bit Ois loaded with a zerqrt~~

C bit is loaded from the most significant bit of ACCX or M. ‘?..~,.,~~J:p’f “-’.,h<i..,>,,,.!,.,, ‘$.:~,
Condition Codes: H: Not affected.

~i>>.~:fd..>+.<,.,\,}.,:*,.,,
,$”:<?:.,$:?

1: Not affected.
,1‘ .,.,-N~l:,, S>i,r!,:$.~“ ,.,:$‘

N: Set if most significant bit of the result is set; cleared ot~aw.

Z: Set if all bits of the result are cleared; cleared othe~i&&%i,$ ~

V: Set if, after the completion of the shift operation, Elq~~R (N is set and C is
‘., :.,s.,’~$Jl.

cleared) OR (N is cleared and C is set); clear~x~~tkerwise.

C: Set if, before the operation, the most significant~~~~$~he ACCX or M was set;
<*!>>:,x;;~4:

cleared otherwise. ~Y\*.,~‘-:.~~~a,,,)>>~!j
Boolean Formulae for Condition Codes: ‘?&,,;;.*i:

N=
z=
v=

c=
Addressing Formats

B
See Table A-3

Number of
bytes of

machine code

1

1

3
2

Coding of First (or only)
bvte of machine code.

HEX.

48

58

78

68

B

aOCT. DEC.

110 072

130 088

170 120

150 104

A-7



ASR Arithmetic Shift Right

Operation: I E

-
n1~ c

b7 bo
Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is held constant. Bit O is,

loaded into the C bit. -~....,.~.,.,i$,t.,~~.*,,~$t,i.$~..,t,:>$..
Condition Codes: H: Not affected. ,,4,.s$.?%$$

1:
~;<.:.;~.:~.‘~.q,

Not affected.
>:f,;1..><,.V+p$$,:<.%..~:i,.$-’~..

N: Set if the most significant bit of the result is set; cleared oth~~~$~j$
.?.,. .J

Z: Set if all bits of the result are cleared; cleared otherwise. ,tp<f~,$#
V: Set if, after the completion of the shift operation, EITHER (~$$~et and C is

cleared) OR (N is cleared and C is set); cleared othe@&e. +

C: Set if, before the operation, the least significant bit o~.#~&WCX or M was set;
:!},..,, ,<*

cleared otherwise.
.,<%?’”

‘Y+q~if,:\i,+$’it.,,r,I..*,.!,i,\...Jl),:l:l.
Boolean Formulae for Condition Codes: “!:...,., ~~.~:’

N=R7
:,..t;~ti....3.‘!;+;,,.,.5>s1$:,,

..-..“~,’..$
Z = ~7.~6.~5.~4.~3.~2-Rl.E0 %i~r~):”
v =,N @ C = [N .~] O [~. C] ..{:~:~ys”

‘,,,,.*,..

(the foregoing formula assumesy&~uesof N and C after the shift o~eration)

,,:,::.,
.$!<. . . .

Addressing Modes, Execution Time, an~&,@qc~ne Code (hexadecimal/octal/ decimal):
.;“:’s42?

Addressing
Modes

A

B

A-8



D

Branch if Carry Clear BCC
Operation: PC ~ (PC) + 0002 + Rel if (C)=O

Description: Tests the state of the C bit and causes a branch if C is clear.

See BRA instruction for further details of the execution of the branch.

Condition Codes: Not affected. ,*!.‘*:,-.

o

.,.. ...

Codinq+o?K~;st (or only)
Number of

Addressing Execution Time bytes of
Modes (No. of cycles) machine code

REL 4 2



BCS Branch if Carry Set

Operation: pc ~ (PC) + 0002 + Rel if (C)=1

Description: Tests the state of the C bit and causes a branch if C is set.

See BRA instruction for fuflher details of the execution of the branch,

Condition Codes: Not affected. ,:!$,

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ deci~~$$? Y
‘, ,,r .$.;-?)>:h

~’“~?.+.$’+’$,:+.. ~~.~>.,*
Coding ,~$,F~N~ (or only)

Number of byte.~~~-chine code
Addressing Execution Time bytes of ,.~..,.>,,:::s *.

Modes (No. of cycles) machine code H@{fl OCT. DEC.

RFI A

“.’&,,:::.,.!$

~ ,. ... k 045 037
‘.~.~,~‘~~’~*+:~.~k,?f~{~.>,:t..,’

A-10



Branch if Equal BEQ

B Operation: PC ~ (PC) + 0002 + Rel if (Z)=l

Description: Tests the state of the Z bit and causes a branch if the Z bit is set.

B

A-n



BGE
Operation:

Description:

Condition Codes:

Branch if Greater than or Equal to Zero

PC e (PC) + 0002 + Rel if (N) @ (v) = o

i.e. if (ACCX) = (M)

(Two’s complement numbers)

Causes a branch if (N is set and V is set) OR (N is clear and V is clear). “’:\.:$,(,“
If the BGE instruction is executed immediately after execution of any o{..~~;$~

instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if t~$@&%
~~\.tfi,\:.,+!...

complement number represented by the minuend (i.e. ACCX) was gre,~f.$an or
equal to the two’s complement number represented by the subtra~$~~~t.e. M).

See BRA instruction for details of the branch,
:,,>f.*‘,?.>,,,\ ,,+,.!, ‘+\~:...:.~

<;.$p,,~
Not affected,

~:;r, ....\... ,\,!\...?..}i...,.

A-12



D
Branch if Greater than Zero BGT
Operation: pc - (PC) + 0002 + Rel if (Z) ~ [(N) @ (V)] = O

i.e. if (ACCX) > (M)
(two’s complement numbers)

Description: Causes a branch if [ Z is clear ] AND [(N is set and V is set) OR (N is clear and ~is

clear)].
.!.,,.:.::~.?++$.,,.>..,,.,*.,~$.1>““$‘~4;*{\

If the BGT instruction is executed immediately after execution of a~~&t#$the
\\>

instructions CBA, CMP, SBA, or SUB, the branch will occur if and o@j~~#k two’s

complement number represented by the minuend (i.e. ACCX) W~&~,@ater than
the two’s complement number represented by the subtrahe@S~~&~’M).

~%:.,,~~~
See BRA instruction for details of the branch.

~1,:::.‘y:\4,..+t\\~,.,:..:S,,,.,,‘:,.:“\,t$~
Condition Codes: Not affected.

~~:;:~,,,~\:\ .,/$4\o\:*$).,~ .,*%~c,,,,~j’.~.:.,
Addressing Formats:

~.k*X<. ‘.ti..*~-.+?~b%,,,~},\,,.’ht~i..*f,~
See Table A-8. .. ‘*$’),J$9~:\~

.L.$.,~~,s,$:J:;~$~y..,,,,:,,q,J.,:*l,,.,~>,

Addressing Modes, Execution Time, and Machine Code (be~~&&mal/ octal/decimal):
.~s>$.,:*,

I
I

Addressing Execution Time
Modes (No. of cycles)

D

A-13



BHI
Operation:

Description:

Condition Codes:

PC e (PC) + 0002 + Rel if (C) c (Z)=O

i.e. if (ACCX) > (M)
(unsigned binary numbers)

Causes a branch if (C is clear) AND (Z is clear).

If the BHI instruction is executed immediately after

Branch if Higher

a

instructions CBA, CMP, SBA, or SUB, the branch will occur if and onlgt$,~$’;’
unsigned binary number represented by the minuend (i.e. ACCX) w~~~@’ater
than the unsigned binary number represented by the subtrahend ,(#Q~M~.

,\)><,,~!-’,.$.
See BRA instruction for details of the execution of the branch .,~,’{ “$”.+$’.}.*y:s

Not affected.
,.}+:~<,$$.+$>*., ‘s’~~,..’:;\‘1,,>,.,,,.

1**{,

,.:’?:
Addressing Modes, Execution Tree, and Machine Code (hexadq~w?Poctal/ decimal):;J,..... :\\.,..<.>~+:..,...

A-14



Bit Test BIT

B

B

B

Operation: (ACCX) . (M)

Description: Performs the logical “AND” comparison of the contents of ACCX and the contents

of M and modifies condition codes accordingly. Neither the contents of ACCX or M

!:,

,,, ~~e=,if
“.’.{S’..\ .:,....

Addressing Modes, Execution Time, and Mach~~@ude (hexadecimal/octal/ decimal):
..,

,1::,.
.,::~

*4*, Coding of First (or only)... ,./>,..,, >,{t. ‘~t\ Number of byte of machine code
Addressing Execution TjW$~J bytes of

Modes (No. Of Cy~@%]?” machine code HEX. OCT. DEC.<,..,,,,,::,..

A IMM +:~$p’ “ 2 85 205 133
A DIR ,,~+,>: “?’ 2 95 225 149
A EXT ,*,,,.$e,m\,$“’”4 3 B5 265 181
A lND

,i.\\Js8,’. 11’,:,ls..>Y( .:.t~.
:,, 5 2 A5 245 165‘.’.;,>.,.,. .,,.,,,.....

B IMM *$I‘,*::&\,\.,!.!
.t$\,, 2 2 C5 305 197

B DIR ,F * $?FZ 3 2 D5 325 213
B EXT’’$~~~$) 4 3 F5 365 245
B >~ti~$’w 5 2 E5 345 229

~,.,~$’....

A-15



BLE Branch if Less than or Equal to Zero

,Operation: PC e (PC) + 0002 + Rel if (Z)~[(N) @ (V)]=l

i.e. if (ACCX) < (M)
(two’s complement numbers)

Description: Causes a branch if [Z is set] OR [(N is set and V is clear) OR (N is clear and V is,,
set)].

If the BLE instruction is executed immediately after execution of an~~~~,l~~
instructions CBA, CMP, SBA, or SUB, the branch will occur if and onl~.if~wbo’s
complement number represented by the minuend (i.e. ACCX) was$~~~$fhenor
equal to the two’s complement number represented by the subt~~$fid (i.e. M).

See BRA instruction for details of the branch.
‘.,..$@‘,‘>\ ‘KY~$$::::?:,*:+,:,

Condition Codes: Not affected,
:;,,ph~.V<;..* ,k.~~,,>{.““ ~ ~$,*,:i.....*Y’,,{}%~*&*~,>S

Addressing Formats: {~,,.,...\:\\\~,..,”.,-,..,S,“v~<iy..:.,,....,,
See Table A-8.

<.,.t t+~,}i.’,,.’.+..,*i,

Addressing Modes, Execution Time, and Machine Code (he~#~&#al/ octal/decimal):

k
REL

Execution Time
(No. of cycles)

4

A-16



B

B

Branch if Lower or Same BLS
Operation: PC ~ (PC) + 0002 + Rel if (C)O(Z) = 1

i.e. if (ACCX) s (M)

(unsigned bina~ numbers)

Description: Causes a branch if (C is set) OR (Z is set).
~~*~.*.

If the BLS instruction is executed immediately after execution of any,,$m;~$b

instructions CBA, CMP, SBA, or SUB, the branch will occur if and ~id~y~~$tfie

unsigned binary number represented by the minuend (i.e. ACCX) *J&sthan

or equal to the unsigned binary number represented by the subtr~$~;~~.e. M).,.*,>

See BRA instruction for details of the execution of the bran~}~~~’$~

Condition Codes: Not affected.
k~~,$,,:f.’,,$*

,~}..’{;$:,
,.,‘Y)::y$it{;iy.

Addressing Formats:
i..~i.,,,~.~,’.<+,,k,)“,.~: .,,r“,$.*2::,*:,.

See Table A-8.
,...!:.>.s,“i:>.>r.\\;i:$P.<$,}$l)J*e~;$.:,\

+,‘“71*.*<$:$?
Addressing Modes, Execution Time, and Machine Code (hex$*l/ octal/decimal):

.,., ~.!?
~.$$.!yu,,...,,,*..,.:~y+,~ S*,J$ Coding of First (or only)

Nu~e$~f byte of machine code
Addressing Execution Time ~Yh@ of

Modes (No. of cycles) qc~nb code HEX. OCT. DEC.
,,?,,:.,..:~i?x{,.~,‘,.,..,.

REL 4 ~!;:;:+{>.$,,.~:!+.
-~:?\\” 2 23 043 035

D

A-17



BLT Branch if Less than Zero

Operation: PC - (PC) + 0002 + Rel if (N) @ (v) = 1

i.e. if (ACCX) < (M)
(two’s complement numbers)

A-18



Branch if Minus BMI

D’ Operation:

Description:

PC+ (PC) + 0002 + Rel if (N) =1

Tests the state of the N bit and causes a branch if N is set.

See BRA instruction for details of the execution of the branch.

Not affected.Condition Codes:

,,>,:‘~.?.;.

Codi@/&f Hrst (or only)
Number of ~~~~~’machine code

Addressing Execution Time bytes of .!.,.’.’-“.;?...1>.,,,,?.<
Modes (No. of cycles) machine code $&:~p*. OCT. DEC.

REL 4 2 ,,,,.::. , “’” 26
,{\.~:.!..> .*,V 053 043

,,,:~’$y,~<,~:..~,.

B

A-19



BNE Branch if,Not Equal

Operation: pc - (PC) + 0002 + Rel if (Z) = O

Description: Tests the state of the Z bit and causes a branch if the Z bit is clear.

See BRA instruction for details of the execution of the branch.

Coding&~~,Fi&~(or only)
Number of bytq~~kwchine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code DEC.

A-20



Branch if Plus BPL

B Operation: PC ~ (PC) + 0002 + Rel if (N) =0

Description: Tests the state of the N bit and causes a branch if N is clear.

See BRA instruction for details of the execution of the branch.

D



BRA Branch Always

Operation: PC - (PC) + 0002 + Rel

Description: Unconditional branch to the address given by the foregoing formula, in which R is

the relative address stored as a two’s complement number in the second byte of
machine code corresponding to the branch instruction.

Note: The source program specifies the destination of any branch instruction ~~%i

its absolute address, either as a numerical value or as a symbol or expre~s’@”
which can be numerically evaluated by the assembler. The assembler oQ~#~~ti’e

.,...>,

relative address R from the absolute address and the current value ofJ~,fp$~ram

counter PC. *k:$:,:.,>,\ ,.lt.~.>!<:.:>:::$,.?<?

Condition Codes: Not affected,
.,:f?;

,.:$8~:!,,,\.~’:.

Addressing Formats:
. .“~,$

*&”J$!..*$\l.,.$~,$,,>.’i~~.:$>,~,~,~

See Table A-8.
~.$,.:,*i:J”’..,/~.,’~:{$::,’ ,..~ .,,,.a*.... ‘\.yy:;,i:i.,),,?:z:,>.?i.,.,.

Addressing Modes, Execution Time, and Machine Code (hexadeci@/ o$tal/ decimal):$<*,+~!~.<;.~t,.>~....... J.~~,,ts~..$>,... ..,,
~ ‘:$,$,>> Coding of First (or only)

Number tiij~ ““’’i-’ byte of machine code
Addressing Execution Time byte$:~f *

Modes (No. of cycles) mac~$~~de HEX. OCT. DEC.
:., .,:+

REL 4
:....F,,!.

.i*~~;:P” 20 040 032
i,..,.*,

A-22



Branch to Subroutine BSR

D Operation: Pc + (Pc) + 0002

J (PCL)

SP + (SP) – 0001

J (PCH)

SP + (SP) – 0001

~~*~.*.J$,,,>,...?.-,.,?.,,.~.,\:,$,~.~).~..~.,,,,*!’J’,‘ ..$“’-:$,\ $.’},?“it},,
PC e (PC) + Rel -i:{. ~‘:,,,,:,,.::,’,,$.,)“’*!@<“,.):..

Description:
\v::>y..\.i

The program counter is incremented by 2. The less significant byt~ti~~hdcontentsL*,+,,:”,\~
of the program counter is pushed into the stack. The st~~k!.t~hter is then
decremented (by 1). The more significant byte of the co~~efilq~bf the program
counter is then pushed into the stack. The stack pointer ~s~xn decremented (by

1). A branch then occurs to the location specified hy’~&&@rogram.‘:,.~)..<~“~,., :.,1
See BRA instruction for details of the execution-,#X&branch.

Condition Codes: Not affected.
~!~,.,.:,,\

d:?~ b’
.:$$,$.:>4.;,:..

Addressing Formats: ,(.*J,<~.,.t:t:\,\/y ~?,.....,>*’J.&,,$,.i,!${~
See Table A-8. ,,,$.:”\~,t,v.,.*.\;+\+,.+,.?.

,,{$~>:..,x
Addressing Modes, Execution Time, and Machine ,@@e~hexadecimal/ octal/ decimal):

:,.~:~:\,*’
,+~,~ts~.,~..~>?:;$C.,,.s),,,\t, Coding of First (or only)

D

“v$Number of byte of machine code
Addressing Execution Time,&, ‘$ bytes of

Modes (No. of cycles~ Ysj, machine code HEX. OCT. DEC.
‘.,... ....,.$“.’$:$\:+,t:3::t~>.

REL 8> tj~> <~ 2 8D 215 141
:.:.>:,,.!-.!1..!~~4..~:,,‘~’s.\.&~’,t.\\~~,,,.,,~

~:,‘!:.:,:;:,h:;{,
“.:?.:},..:,‘\..~~. ;., ‘

Language

SP e $EFFD
$EFFE 10
$EFFF 02

0

A-23



BVC Branch if Overflow Clear

Operation: PC - (PC) + 0002 + Rel if (v) = O

Description: Tests the state of the V bit and causes a branch if the V bit is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected. *,\*’X,l,$J,$<,.,,.,’~,’$:.
Addressing Formats:

‘!(:,,:1+ts.,
~??*~*t.,,~’,>

?‘?!,
See Table A-8.

:J~.~,*, s$i,t,,,$:,~?’.$.::tit~A\$,.:.$.,,’ .,,..,*,\..:,~<:.‘..,:,..}s.,,,~,t~

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ deci~?~~jF”*$
,1:,.:.. ,.~

Coding+~~+Fir5~ (or only)
Number of byte~~~~~chine code

Addressing Execution Time bytes of ,. t\.i’.

Modes
!‘$.’,..\*

(No. of cycles) machine code ,~gf;,$ ‘ OCT. DEC.m,,;?;.‘“
REL 4 2 ‘ $$ 28,\..,. 050 040

A-24



Branch if Ovetilow Set BVS

B Operation:

Description:

Condition Codes:

pc - (PC) + 0002 + Rel if (V) =1

Tests the state of the V bit and causes a branch if the V bit is set.

See BRA instruction for details of the execution of the branch.

Not affected.

B

A-25



CBA Compare Accumulators

Operation: (ACCA) - (ACCB)

Description: Compares the contents of ACCA and the contents of ACCB and sets the condition

codes, which may be used for arithmetic and logical conditional branches, Both
operands are unaffected.

Condition Codes: H:
1:
N:

z:

v:

c:

Not affected. ~~*~.*....... $,*,
Not affected.

f!’}~{,?.(,!~tt.,:*,
,.;*],* ~~..?,.,.:...:.(,.s..*+,

Set if the most significant bit of the result of the subtraction would @&!;

cleared otherwise.
~,,s>.i‘$!$:,,“
,>,..,<+~t{.,\,. ,,: ~,,:

Set if all bits of the result of the subtraction would be clea~a<~~~~eared

otherwise.
-’”~Q~“$>$+.,.,~~.~~’i:+>,~,:>,<:+,

Set if the subtraction would cause two’s compleme~~~v~~ow; cleared
,:.;~.:

“’~’~~~.:-,,,$,,otherwise, a$...;~:..,.* ><,,,:,W
Set if the subtraction would require a borrow into,,~~~~st significant bit of

A-26





CLl
Operation:

Description:

Condition Codes:

Clear Interrupt Mask

lbit+O

Clears the interrupt mask bit in the processor condition codes register. This

enables the microprocessor to service an interrupt from a peripheral device if

signalled by a high state of the “Interrupt Request” control input.

A-2a



Clear CLR

B Operation:
or:

ACCX +00
M+OO

Description: The contents of ACCX or M are replaced with zeros.

::
Addressing Modes, Execution Time, and Machine Q.&~&:[hexadecireal/ octal/ decimal):,i,r!.+>,$,,.

D

~:k” *\.,

~~.... *,.,.
.*.)

‘~<1,:::,

4
Coding of First (or only)

‘~vfiumber of byte o machine code
Addressing Execution Time bytes of

Modes (No, of cycles) $~{,, “ machine code HEX. OCT. DEC.
~“:.. s~,~, a117 079

137 095
177 127
157 111



CLV
Operation:

Description:

Condition Codes:

Clear Two’s Complement Ovetilow Bit

Vbit+O

Clears the two’s complement ovedlow bit in the processor condition codes
register.

H: Not affected.

A-30



D

B

Compare

Operation:

Description:

Condition Codes:

CMP
(ACCX) - (M)

Compares the contents of ACCX and the contents of M and determines the

condition codes, which may be used subsequently for controlling conditional

branching. Both operands are unaffected.

H: Not affected. ,*!.‘*{,3,
1: Not affected.

sg:.;y.~i<t~,
,(,.~,.~,:,.. ~,i,! .1.,

N: Set if the most significant bit of the result of the subtraction wo~l~..~$ set;>,..,,.,:3.,,‘.’‘*.
cleared otherwise.

,!,.-,..~‘~!~~w,+t$.:$..~:
Z: Set if all bits of the result of the subtraction would be ~~~a~~; cleared

otherwise.
..,./,,+!,<,?*::,\~:,\.,,,,4{: ,,,,

V: Set if the subtraction would cause two’s comple,~nt>@$erflow; cleared
t.,,

~+j,..x
otherwise. \~’~’$$:.::$... ,-,..,.,,,t:\r*&,$~,.

C: Carry is set if the absolute value of the content~:&<s~&rnory is larger than the

absolute value of the accumulator; reset o@@e..\.. .
Boolean Formulae for Condition Codes:

,.:~t,,C:*+,,.:<.,..3),.,.$,

Number of
bytes of

machine code

2

2

3

2
2

2

3
2

Coding of First (or only)
bvte of machine code

B

A-31

HEX. OCT.

81 201

91 221

BI 261

Al 241
cl 301

D1 321

F1 361
El 341

DEC.

129

145

177

161
193

209

241
225



COM Complement

Operation:
or:

Description:

Condition Codes:

ACCX + = (ACCX) = FF - (ACCX)
M+=(M) =FF- (M)

Replaces the contents of ACCX or M with its one’s complement. (Each bit of the

contents of ACCX or M is replaced with the complement of that bit.)

H: Not affected. ~~*~.\F

A-32



Compare Index Register

Operation:

Description:

Condition Codes:

Boolean Formulae

B

CPX
(lXL) - (M+l)

(IXH) - (M)

The more significant byte of the contents of the index register is compared with

the contents of the byte of memory at the address specified by the program. The

less significant byte of the contents of the index register is compared wit~~Qe

contents of the next byte of memory, at one plus the address specifi~d’~fi~fle

program. The Z bit is set or reset according to the results of these cq~ti&ons,

and may be used subsequently for conditional branching.
,*,,’1,.,,.;,”’;++,,
!:$,h,:t+:’:$$,F::.

The N and V bits, though determined by this operation, are ‘~~)intended for-~.*\}lb<,,,>>
conditional branching.

~,;.,.
*:~+,,if-~t

‘t:.,:~}..’\.l\
The C bit is not affected by this operation.

\.,i ,
$~t.$.,..{.*\i.)>..,.$$,,*$f.i+,‘s-

H: Not affected.
$’.<.:<,$:..~,,.,i~ ,,6 .,\-.A

“i]@y’1.
1: Not affected.

f::\$?2\.....?O~:.il~”
.’,*..,,,,.‘,~},::+*J

N: Set if the most significant bit of the res~~~,o’?$esubtraction from the more

significant byte of the index register:,~~~f~be set; cleared otherwise.

Z: Set if all bits of the results of both ~~~~actions would be cleared; cleared
,\;>::’. ~

otherwise. .,.,,’-?}*$,
V: Set if the subtraction from @~+,more significant byte of the index register

would cause two’s comp(@Wqn~overflow; cleared otherwise.

C: Not affected.
K$)$t\.,,,::.?C..,.,..1,,,

,%f&>.Lk$>,., ~..,
for Condition Codes:

~\~~,,..&,
,,$.,

N = RH7 >*”’.>

Z = (~7. ~6. ~&;~4. ~3. ~H2. ~l. ~0).

(~L~ .~L%?~FkL ‘~3 .~L2 .~l .~Lo)

V = lXH7.~$*?+~7. M7. RH7

IND

B

LCoding of First (or only)
Number of byte of machine code

bytes of
machine code HEX.

3 8C
2 9C
3 BC

2 AC T
OCT. DEC.

214 140

234 156

274 188

254 172

A-33 I



DAA
)peration:

State of
C-bit

before
DAA

(Col. 1)

o
0
0

0
0
0

1

1

1

Decimal Adjust ACCA

Adds hexadecimal numbers 00,06,60, or 66 to ACCA, and may also set
the carry bit, as indicated in the following

Upper
Half-byte
(p::, 4;)

.

0-9
0-8
0-9

A-F

9-F

A-F

o-2

0-2

0-3

Initial
Half-carry

H-bit
(co113)

o
0
1

0

0

1

0
0
1

Lower
to ACCA
(bits O-3)
(Col. 4)”

o-9
A-F

o-3

0-9
A-F

o-3

....

Note: Columns (1) through (4) of the above table repres~~~~~~,,possible cases which can result from

any of the operations ABA, ADD, or ADC, with~iqp~$ carry either set or clear, applied to two

binary-coded-decimal operands. The table sw~w~exadecimal values.

Description: If the contents of ACCA and the state o~~thecarry-borrow bit C and the half-carry bit H are
all the result of applying any o[+~e operations ABA, ADD, or ADC to binary-coded-

decimal operands, with or w~$w~an initial carry, the DAA operation will function as

follows. \,r\$ .*-.,,~’
,.,\.,,,\.JI’,!.

,\:\>tj‘“s+:$:,yj~.’
Subject to the above c~~w%, the DAA operation will adjust the contents of ACCA and

the C bit to represe~t~~%orrect binary-coded-decimal sum and the correct state of the

carry. ,<,.$7*.,*,.:$,,,t..,..,,,{\.. ‘::.
Condition Codes: H: ~$~~~cted,

1: $~~~~~tiffected.

~: “k@@tif most significant bit of the result is set; cleared otherwise.

~~$~~(;sSet if all bits of the result are cleared; cleared othe~ise.
$:k.$~ Not defined..,,{,\,

.?s+ C: Set or reset according to the same rule as if the DAA and an immediately*::.:,,/:* ..,..?,,~.,<..;.$”,.{.~.:-::.\,,.J}...~:*,t,,
:$‘ preceding ABA, ADD, or ADC were replaced by a hypothetical binary-

:.:’>,
f~,+fi.,<8,’,T:;..t!$. coded-decimal addition.

\,Q..,;:,.,\.
B9J$&Formulae for Condition Codes:..1.!\~,..,,*J>.

‘~:.,L N=R7

Z = ~7.~6.~5.~4~3.~2.~1.~0

C = See table above.

A-34



D

D

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Addressing
Modes

INHERENT

Execution Time
(No. of cycles)

2

B

A-35



DEC
Operation: ACCX + (ACCX) – 01
or: M+(M)–01

Description: Subtract one from the contents of ACCX or M.

Decrement

a

The N, Z, and V condition codes are set or reset according to the results of this

operation. *,\*’X,l,$J,$<,.,,.,’~,’$:.
The C bit is not affected by the operation.

‘!i.,,,1+ts.,~~$b.‘1$,>.,,:\>.,:.’’::,:‘“

Condition Codes: H: Not affected.
$:t+,,.,.~\].*,.’’,f\;,:,.:,~,l,>,.+- ,*,>,.,.

1: Not affected.
,}}.,.,,[,:.$~+~.

,~:,,,*‘t$~m”:*>,,~~
. %,+~*

N: Set if most significant bit of the result is set; cleared othe~$s~$~~~+:’
Z: Set if all bits of the result are cleared; cleared otherwisq: “’$$}

V: Set if there was two’s complement overflow as a resxk~$f the operation;

cleared otherwise. Two’s complement overflow occ,~$k~and only if (ACCX)

Addressing Formats:

See Table A-3.

,,l~?.

Addressing Modes, Execution Time, and Ml%ne Code (hexadecimal/octal/ decimal):

‘Coding of First (or only)
byte of machine code

HEX. \ OCT. I DEC.

4A 112 074

5A 132 090

7A 172 122

6A 152 106

A-36



Decrement Stack Pointer DES
Operation:

Description:

SP + (SP) – 0001

Subtract one from the stack pointer.

Condition Codes: Not affected,

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):
“’;$*\\*,:+?).,,.\\:.r,j3.~\~t,,.).:xi@

.,.d:,:‘“f:.\
Coding of Firs\[&@ti~y)

Number of byte of maqH,@j&de
Addressing Execution Time bytes of ,, ,?>.,’,h!,)):,,,,.:,*....~

Modes (No. of cycles) machine code HEX. ,$=~” DEC.
v, .,;.

INHERENT 4 1 34.;:%>$k “’&~64 052
$,,...,,.~\ .+-~,,$.:$~ ~t::.+,~,>~>,.,“.$.,,, . ,.

-..,.

B,



DEX Decrement Index Register

Operation: lx + (lx) – 0001

Description: Subtract one from the index register. a

Only the Z bit is set or reset according to the result of this operation.

—— __
Z = (~7.RH6.RH5.RH4.RH3.~~~1 .RHo).

~.,:..
.::1$,:. ,:,:~,,L..:?*-.,}.,.}

(FL7 . m6 . ~5 .~b . ~3 . ~Z . RL, .mo) ~~:’:~*’!;’.:.p ,.\,..
!’$],,.:.~,*!, %.*.,..,.

‘,,.}.,,... >,.,

Addressing Modes, Execution Time, and Machine Code (hexadecirn,@~%taI/ decimal):

A-38



Exclusive OR EOR
Operation: ACCX + (ACCX) @ (M)

Description: Perform logical “EXCLUSIVE OR” between the contents of ACCX and the
contents of M, and place the result in ACCX. (Each bit of ACCX after the operation
will be the logical “EXCLUSIVE OR” of the corresponding bit of M and AQCX
before the operation.) ~++%;.~$,,&..’4\,:,<~

Condition Codes: H:
1:
N:
z:
v;
c:

I I

D

.,-.+
;~,.

Number of
bytes of

machine code

2
2

‘3
2
2
2

3
2

Coding of First (or only)
bvte of machine code.

HEX.

8a
9a
Ba
A8
ca
Da
Fa
E8

OCT.

210
230
270
250
310
330
370
350

DEC.

136

152
1a4
168
200
216
248
232

A-39



INC Increment

4
Operation: ACCX ~ (ACCX) + 01
or: Me(M)+Ol

Description: Add one to the contents of ACCX or M.

The N, Z, and V condition codes are set or reset according to the results of this .-:~:~+,,
operation. ?>’.J.,\:<*;..,\$;,:!,..,,.,\~.v$+$<,’’’”“,,
The C bit is not affected by the operation.

~. *t{$\+‘~-,,$.,..wt+,.\.\,.~:<,~..,;,,:$~

Condition Codes: H: Not affected.
,q,h.~b,~+,,,*,’ ,>.,,.....,..J>*~:;::?,.er

1: Not affected.
,,.j,~~~.,’~l.::,,,~,$..

at&y:+t,B<$<.::,$$’
N: Set if most significant bit of the result is set; cleared othe~{s~ ~
Z: Set if all bits of the result are cleared; cleared otherwiq,@!,. ‘‘::*2.:$
V: Set if there was two’s complement ove~low as a re~~$;~ the oPeration;

cleared otherwise. Two’s complement overflow .e${$FQEcurif and only if

A-40



Increment Stack Pointer INS

B Operation: SP + (SP) + 0001

Description: Add one to the stack pointer.

Condition Codes: Not affected.

B

A-41



INX Increment Index Register

Operation: lx+ (lx)+ 0001
Description: Add one to the index register.

Only the Z bit is set or reset according to the result of this operation.

Condition Codes: H: Not affected.
1: Not affected.

*,\*’X,l,$J,$<,.,,.,’~,’$:.‘!(:,,:1+ts.,
N: Not affected. ..4?*3,,~k~~’,>$’ .&.t.
Z: Set if all 16 bits of the result are cleared; cleared othewise, ,, ,

~e,‘i~b .’*>>\\‘*)>:,,$:,?’,t,.\tJ..(,:*,,J
V: Not affected, i+,.:,!~”ss‘<I. ,,>.,.{~~
C: Not affected.

~,.:~’.’*it’ . ‘~:,*.,$,.\,*.t,<k. !,.t*’’\i.i\it&-?!>y,::7.
Boolean Formulae for Condition Codes:

—— __ __ _
Z = (~7. RH6.RH5.RH4. RH3.RHZ.RHl. RHo).

(m7.~6.~5.~b.~3.~L2.~1.~0)

,,,,p

byte of machine code
Addressing Execution Wme

Modes (No. of cycles)

INHERENT 4

A-42



JMP

B
Jump

Operation:

Description:

Condition Codes:

PC + numerical address

A jump occurs to the instruction stored at the numerical address. The numerical

address is obtained according to the rules for EXTended or lNDexed addressing.

,.t~.+.+..:..,,,>.,,~$,:,:$.,,‘ ~’~

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ dec@dl)~
\~~s..,.~,>

Codi~ ~i$,prst (or only)
Number of by@~&[ machine code

Addressing Execution Time bytes of
.,.~;t\\;*, .

Modes (No. of cycles) machine code
,,:QZ * ~cT,

DEC.
“’*{\,‘~’

EXT 3 3 ‘%$L”>E 176 126,;..>.~\
IND 4 2

,,,?’~’”>%>
!:/..,,*.~’?’3 6E 156 110,,,.,~..,,.,*-%$,,‘r>..<,

B

A-43



JSR
Operation:
Either: pC~(PC) +0003 (for
or: PC ~ (PC) + 0002 (for
Then: J (PCL)

SP + (SP) – 0001
J (PCH)
SP + (SP) – 0001

Jump to Subroutine

EXTended addressing) 9
lNDexed addressing)

PC + numerical address
.’.’*,.%!.}:.~>yt,!>.,:,/$“+,:.~‘>,%..lt*-

Description:
, t{~{?f?.’’$’$.

The program counter is incremented by 3 or by 2, depending on thq~d~&Ssing
mode, and is then pushed onto the stack, eight bits at a time. T~pq~~&[ pointer
points to the next empty location in the stack, A jump occur~~o’~ instruction
stored at the numerical address. The numerical address isA@~~f~d according to

....+
Addressing Modes, Execution Time, and Machine Code ~*xa~ecimal/ octal/ decimal):

./,.},,,>.,,,,,, ,,.. .......
.\,\J+,;

~\, \ :*,. ,$$F Coding of First (or only)
~+ker of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) ~;<,,, fiachine code HEX. OCT. DEC.

*,8A.!\\: \>
EXT 9 ~?.;,.,,,,3+J... \..},\\’i+!.~.~<:. 3 BD 275 189
IND

,>$”* ‘>*:,,..
8 ‘t.:*,*.\,..,,,*\?*’~,.~.,~. .,);,. 2 AD 255 173

‘:..~$.’i,.‘\!\,’.,,.

,,, Wory
Machine Assembler Language

.$~:~ocation.+\.~ Code (Hex) Label Operator - Operand

A.
,<’i,-,:\. %:.

Be fore:%.,,‘Q3!%.

B, Afier:

Pc + $2077 ** CHARLI *** *****

SP + $EFFD
$EFFE 10
$EFFF 02

A-44



B

B

D

Load Accumulator LDA
Operation:

Description:

Condition Codes:

Boolean Formulae

ACCX + (M)

Loads the contents of memory into the accumulator. The condition codes are set

according to the data.

(DUAL OPERAND)

I I
,,. ,*.

.>1, ~d.. ,, ,:,.
-.. !,\ . .... .. ..

~ .?.,\ Coding of First (or only)
‘%$~~umber of byte of machine code

$.,s bytes of
machine code HEX.

2 86

2 96

3 B6

2 A6

2 C6

2 D6

3 F6

2 E6

+
206 134

226 150

266 182

246 166

306 198

326 214

366 246

346 230

. .

A-45



LDS
Operation:

Description:

Condition Codes:

Load Stack Pointer

SPH - (M)

SPLe(M+l)

Loads the more significant byte of the stack pointer from the byte of memory at the

address specified by the program, and loads the less significant byte of the stack,

pointer from the next byte of memory, at one plus the address specified by tb~>~i~

program. ,,.~.,!+,:4}..~~s,‘~:!>
.3$,~,,:*,
,,....\?

H: Not affected.
,....+-t.:{J,,.\-!\\\,,,..>:,,,.> .>.:,:,,?

1: Not affected. a‘::!lf:rYi\,:...> ~:~;>y\$:..,$?
N: Set if the most significant bit of the stack pointer is set b~~~&&eration;

cleared othewise. I.,\ ,.,$~,k,.i$v..,,

Boolean Formulae for Condition Codes:
,){:,$:... ,,.....‘,,.\\.~$y~~.~x.......... t<.,,

Addressing Formats:

See Table A-5.

b,,,
.+?$,$

hlhe Code (hexadecimal/octal/ decimal):

Number of
bytes of

machine code

3
2
3
2

Coding of First (or only)
bvte of machine code.

HEX.

8E
9E

BE

AE

OCT.

216

236

276

256

DEC.

142

158
190

174

A-46



Load Index Register LDX

B
Operation: IXH e (M)

IXL-(M+I)

D

B

A-47



Logical Shift RightLSR
Operation:

Description:

Condition Codes:

Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded with a zero. The C

bit is loaded from the least significant bit of ACCX or M. ,*!.‘*{,3,es:<.\.*:<2~,
H: Not affected.

~,..>>“*rit. ~_+.,:,,!*,Y*.,>,;J.
1: Not affected.

*..,, ...!.!%,\.??.*,,,$./*>*..~!.

N: Cleared.
,,,..:$.!,:+:*:,,,.$,:<:$$;l!.*. 1.>

Z: Set if all bits of the result are cleared; cleared othewise. .,., ,t~~$i~:’
,>$:‘ ..‘,>?$,,,,\,

V: Set if, after the completion of the shift operation, EITHER (x~s#~t and C is

cleared) OR (N is cleared and C is set); cleared othe~~~p. “:S

C: Set if, before the operation, the least significant bit of ~k&~~~X or M was set;
cleared otherwise.

.}(:“ ,.,u~
.:~.!:1~.:.~.,><,\.Lii~..

,.. .>,.’+”
,4..

., .~~ \

Addressing Modes, Execution Time, and,,,,~~c~he Code (hexadecimal/octal/ decimal):

A-48



D

Negate

Operation:

or:

Description:

Condition Codes:

Boolean Formulae

NEG
ACCX + – (ACCX) = 00 – (ACCX)

M+–(M)=OO -(M)

Replaces the contents of ACCX or M with its two’s complement, Note that 80 is left

unchanged. ~~>~~.,.
H:

1:

N:

z:
v:

c:

Not affected.
...... ~,e,f!’}~.::.?.(,S$<>,?;:*.,,.,.,.C$,,~,>,\

Not affected.
,\\.!?$,.’:~.i.,.!...$$

.%:&::*~,4*&’
Set if most significant bit of the result is set; cleared otherwi~~:,~,

Set if all bits of the result are cleared; cleared otherwise. ~~j$?’’”$’
Set if there would be two’s complement overflow as a r~WM@~the implied

subtraction from zero; this will occur if and only if the ~ntb~k of ACCX or M
i~~~....1.

is 80. S;$.i..,$:,,.,*I]!,,.,.\,,<&

Set if there would be a borrow in the implied su@~~~$~f&nfrom zero; the C bit

will be set in all cases except when the coq~~~b~f ACCX or M is 00...!:::.,~.tti,,.~.,{$l,

Addressing Formats:

See Table A-3.
,$ii,

Addressing Modes, Execution Time, a,@:~&achine Code (hexadecimal/octal/ decimal):

J
100 064

120 080

160 112

140 096

I Coding of First (or only) I



NOP No Operation

Description: This is a single-word instruction which causes only the program counter to
be incremented. No other registers are affected.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal): .:,,

A-50



Inclusive OR

B Operation:

Description:

Condition Codes:

ORA
ACCX + (ACCX)~(M)

Perform logical “OR” between the contents of ACCX and the contents of M and

places the result in ACCX. (Each bit of ACCX after the operation will be the logical

“OR” of the corresponding bits of M and of ACCX before the operation). “’:\.:$,(,“
H: Not affected.

?>..J.,\:<*;<>.,\:;:,..,,., ,,:.$.h
~l..?.?’.‘,+,,;,

1: Not affected.
>,:*::,:*.$,.j;. !t‘.l:?<.,.{T.~*>:,\.,~1>~

N: Set if most significant bit of the result is set; cleared otherwi@$.,.Y~,

z:
,*$,:$!J.?$

Set if all bits of the result are cleared; cleared otherwise. ,8$F..s+”
V: Cleared.

t~Jf:,$$;
.$$.i?t$i,,*,:,>,.,,,..,,+>:,: ‘‘:ji

C: Not affected.
...\\&,...>~,~,,”, “.*y::

(DUAL OPERAND:

B Addressing
Modes

A lMM

A DIR

A EXT
A IND

B IMM

B DIR @

Coding of First (or only)
byte of machine code

HEX. OCT. DEC.

8A 212 138

9A 232 154

BA 272 186

AA 252 170

CA 312 202

DA 332 218

FA 372 250

EA 352 234

,..
4 3
5 2

D

A-51



PSH
Operation:

Description:

Condition Codes:

Push Data Onto Stack

J (ACCX)
SP + (SP) – 0001 –.,

The contents of ACCX is stored in the stack at the address contained in the stack
pointer. The stack pointer is then decremented.

Not affected. ‘“
“’:\.:$,(,“

.>’.J.’\:t*>.,\:;,;:....

A-52



B

B

D

Pull Data from Stack PUL
Operation: SP + (SP) + 0001

~ ACCX

Description: The stack pointer is incremented. The ACCX is then loaded from the stack, from

the address which is contained in the stack pointer.

Co~$~@iwf First (or only)
Number of a,~$~&of machine code

Addressing Execution Time bytes of ..,.\ ~,.:.,,,.>,:

Modes (No. of cycles)
.C,$$gx.

machine code :;:: OCT. DEC.
,...,&$’t“;;

A 4 1
.1,.::,,’>.?.~~:p,...,.,k~,.... 32 062 050.tQ,3\k%$.,

B 4 1 .* t 1 “ 33 063 051

A-53



ROL
Operation:

Description:

Condition Codes:

Rotate Left

Shifts all bits of ACCX or M one place to the left. Bit O is loaded from the C bit. The,,,

C bit is loaded from the most significant bit of ACCX or M. *’X,l,$J,$<,.,,.,’~,’$:.‘!i.,,,1+ts.,

H: Not affected.
~~$b.‘1$,>.,,:\>.,:.’’::,:‘“$.?...

1: Not affected.
~il.y,>..,.,)...‘:Fi,........

~,l,>,.+- ,*,>,.,.

N: Set if most significant bit of the result is set; cleared otherwis#,&~~.$>
,}}.,.,,[,:.$~+~.

Z: Set if all bits of the result are cleared; cleared otherwise. <.:ss~~l$”
V: Set if, after the completion of the operation, EITHER (~ ~kii@t and C is

cleared) OR (N is cleared and C is set); cleared oth~,~k.
C: Set if, before the operation, the most significant bit o~ti~ %@CXor M was set;

A-54



Rotate Right ROR
Operation: P

D c ~~~ m
b7 bo

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded from the C bit. The
C bit is loaded from the least significant bit of ACCX or M.

,*!.‘*{,3,es:<.\.*:<2~,

Condition Codes: H: Not affected.
~,..>>“*rit. ~

,*F “,:..*. ..-::i>-.-
1: Not affected.

..~,,.1.::l:~<..t,j:>
.)>1.:,! “\.\..,~‘. ... .!,:..

N: Set if most significant bit of the result is set; cleared othe@#@~}

Z: Set if all bits of the result are cleared; cleared othewis~$~,$$‘~ii~~$!~’.

V: Set if, after the completion of the operation, EITHER “~~,{,~ set and C is

cleared) OR (N is cleared and C is set); cleared o~$~~ise.

C: Set if, before the operation, the least significant bJ#~~@’’~CCX or M was set;~$1~’
cleared otherwise. ~+f$,(l:..l*,!{..5~>\&,l\<s,;.

\T~?4$ii*,>?J:,,~~s:.
Boolean Formulae for Condition Codes: ~$...\\~~.:b

N=R7
,::~:’$,Q:,.+f~?~+,?\,.,.,..4$,>;&\..,’s:},,

Z = ~7.~6.~s.~4.R~.R~.~1.~~ s ‘~ “
.:?

~$*’,~’t::?l..*~
V=N@C=[N.~]0[~.C] ,,..:,. .:,,.,..

.i.$?,,,~

..?::$,,,.,.,

Addressing Modes, Execution Time, ,d~$y~~chine Code (hexadecimal/ octal/ decimal):

A-55



RTI
Operation:

Description:

Condition Codes:

Return from Interrupt

Sp + (SP) + 0001, ~cc
Sp ~ (Sp) + 0001, ~ACCB
Sp + (Sp) + 0001, ~ACCA
Sp ~ (SP) + 0001, ~lXH
Sp ~ (SP) + 0001, ~lXL
Sp + (SP) + 0001, ~PCH

“’:\.:$,(,“
?>..J.,\:<*;<>.,:,.... ,,:.$.h

SP - (SP) + 0001, ~PCL
..:.,*$.~t.,~’.:?.,,,.,:~’,1+.2+11*:, .!a~:>X?t,:q;#

The condition codes, accumulators B and A, the index register, and th~~k#&am

counter, will be restored to a state pulled from the stack. Note tha~,~~siwtbrrupt
53%+”..

mask bit will be reset if and only if the corresponding bit stored in t~~~pw~s zero.
‘~:..~.\ .,

Restored to the states pulled from the stack. }:?i+>k.,.~’~,,.,..,, s.
$&’.s.

SP ~ $EFFF 67
CC = HINZVC (binary) 9
ACCB = 12 (Hex) IXH = 56 (Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)

A-56



Return from Subroutine RTS

B Operation:

Description:

SP + (SP) + 0001
~ PCH
SP + (SP) + 0001
~ PCL

The stack pointer is incremented (by 1). The contents of the byte of memory, q~~$

address now contained in the stack pointer, are loaded into the 8 bits o~$ti~&@st

significance in the program counter. The stack pointer is again incr~,~~~:~~’ (by

1). The contents of the byte of memory, at the address now contai~e~~~e stack
pointer, are loaded into the 8 bits of lowest significance in the QJ,&~’cOunter.... .

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ o~~a~~cimal):
,+~ 11.,?,},

@@~hg of First (or only)
Number of ?&~yt~ of m~~hi~e ~od~

Addressing Execution Time bytes of ,,)$>*:,1.~

Modes (No, of cycles) “$;’di’”:”~ HEX.machine cw::~~t OCT. DEC.

INHERENT 5
, ,ig;,yi,l,,?

39 071 057..,’ ~.:..

B

B

A-57



SBA Subtract Accumulators

Operation:

Description:

Condition Codes:

ACCA + (ACCA) - (ACCB)

Subtracts the contents of ACCB from the contents of ACCA and places the result

in ACCA. The contents of ACCB are not affected.

H: Not affected.
1: Not affected.

“’:\.:$,(,“
?>..J.,\:<*;<>.,\:;::,.... ,,:.$.h

N: Set if most significant bit of the result is set; cleared otherwise.
....,*$.~t.,~’.:?.,...-)/: ,5$;*,~~

‘. **+. .G.
Z: Set if all bits of the result are cleared; cleared otherwise. ..X3J,%~.}:.~>y~,!

,$i.+>.i‘~rl~~,
V: Set if there was two’s complement overflow as a result of thqq~~~$tkn.

C: Carry is set if the absolute value of accumulator B plus ~$,Q~,N& carry is

larger than the absolute value of accumulator A; reset ~t~wlse....

Addressing Modes, Execution Time, and Machine Code (he#$~e~rnal/ octal/ decimal):

A-58



Subtract with Carry SBC
B Operation:

Description:

Condition Codes:

ACCX - (ACCX) – (M) - (C)

Subtracts the contents. of M and C from the contents of ACCX and places the
result in ACCX.

H: Not affected. ..!.,

,?;$.<,\ +,,

‘fi&...,~tki$.>

Addressing Modes, Execution fime, and Mach~~~&ode (hexadecimal/octal/ decimal):

D
..t,

(DUAL OPERAND) \,,:*
,>,\i*

Addressing
Modes

3
4
5

2
2
3
2

Coding of First (or only)
byte of machine code

~

82
92
B2
A2
C2
D2
F2
E2

202
222
262
242
302
322
362
342

130
146
178
162
194
210
242
226

A-59



Set Carry

6

A-60



B

D

B

Set Interrupt Mask SEI
Operation: Ibit+l

Description: Sets the interrupt mask bit in the processor condition codes register. The microp-
rocessor is inhibited from servicing an interrupt from a peripheral device, and will

continue with execution of the instructions of the program, until the interrupt mask

bit has been cleared.

Condition Codes: H: Not affected.

1: Set.
N: Not affected.

Z: Not affected.

V: Not affected.

C: Not affected.

Boolean Formulae for Condition Codes:

I =1
‘L:.,{>

,r!,h”.:~,

Addressing Modes, Execution Time, and Machine Code (he~@W{fial/ octal/ decimal):
~~...?,.\\*

,,+,,,.*, $:

.*8$..t:,, ,,,,,,,.,.:”.’,.,,, ~,..,,,, Coding of First (or only)‘“\*;A,
Nu$@ber’Df byte of machine code

Addressing Execution Time ~kgt% of
Modes (No. of cycles) ~p~ne code HEX. OCT. DEC.

.t-$iyp$:<:::},!$,,,
INHERENT 2

..“~’‘>~c.<. 1 OF 017 015
.,::?

A-61



SEV Set Two’s Complement Ovetilow Bit

Operation: Vbit+l

Description: Sets the two’s complement overflow bit in the processor condition codes register.

A-62



Store Accumulator STA

m Operation: M + (ACCX)

Description: Stores the contents of ACCX in memory. The contents of ACCX remains un-

<,>: .

Addressing Modes, Execution Time, and Machine tie~~exadecimal/ octal/decimal):

I

Addressing
Modes

A DIR

A EXT
A IND

B DIR

B EXT

B IND

“.,-. ,..~
::’:..,..~.,.::..i

+.1, ,. \ ‘.$~$.
:\$\:;.-.!:.\\./i Coding of First (or only)
“tNumber of byte of machine code

Execution Time ::? ‘$ bytes of
(No. of cycles).~”t, , machine code HEX.

..,.

2 97

3 67
2 A7

2 D7

OCT.

227

267

247

327

367
347

DEC.

151
183
167
215
247
231

D

A-63



STS Store Stack Pointer

Operation: M e (SPH)
M + 1 e (SPL)

Description: Stores the more significant byte of the stack pointer in memory at the address
specified by the program, and stores the less significant byte of the stack pointe[,,
at the next location in memory, atone plus the address specified by the prograwflSkJ>,.

>,: :+>..:,’. ?\i),\\,i.:’.~.)+.>

Addressing Modes, Execution Time, and Machine~*e (hexadecimal/octal/ decimal):
~~i..

., ,.’
,,* . Coding of First (or only)!,’~~..,’.,.,\ ~,$.,l,,,X..:J..~,i Number of byte of machine code

Addressing Execution Ti@~~~ ;, bytes of
Modes (No. of CyCk@&,,J “ machine code HEX. OCT. DEC.;\\.,,),,\,.,j}.,.\\.,<:.

DIR s;p~’ “ 2 9F 237 159
EXT ,::,$@,:,y 3 BF 277 191
IND $’ %,*il..::\\.i,$:.!;*,6.:.< 2 AF 257 175

.:, ..s,

A-64



Store Index Register

Operation: M - (IXH)

M + 1 e (lXL)

Description: Stores the more

STX

significant byte of the index register in memory at the address
specified by the pro-gram, and-stores the less significant byte of the index regis~~r

at the next location in memory, atone plus the address specified by the proq[~~,::$
,:.:,\ i,,

Condition Codes: H: Not affected.
\Jj:~+i . ;j/,.~&:.,h~,~\.q/.,,.,~.......

1: Not affected.
//$5!:;, .’..*<t.$:.+,>+,,:,:,.~,-,

N: Set if the most significant bite of the index register is set; cl,eg~~,<:p~ewise.
Z: Set if all bits of the index register are cleared; cleared .mSe.

V: Cleared.
‘?l!..::,,,,,,+~?,, }

C: Not affected.
.;d;,q~k:)\.’,.:.:,X)!.?\\?$.\,.>\...,,\; ~f..f.,+i,:

Boolean Formulae for Condition Codes:
.4,5*,, ...::,..,.~.)‘:,.

~$:.,‘“$$:,s,**+
N = IXH7

....-.,~.“’5:i<;,>,.~,:.~t..,.., ,,.—— —— —— —
Z = (IXH7. IXH6. lXH5 . IXH4. IXH3 . IXH2. lXH,~$’@~.—— —— ——

(~L7. IXL6. IXLS lXb. lXLq ~IXLZ. lXL~*4w~k”

%,,>“ .,,,

See Table A-6. ,..>;.,.,,\\ ...<.,\.,.‘\;!?>>!, >t$.’~.$.}~l;ii,t:.,,

Addressing Modes, Execution Time, and Machi#$~&ode (hexadecimal/ octal/ decimal):

A-65



SUB Subtract
Operation: ACCX - (ACCX) - (M)

Description: cSubtracts the contents of M from the contents of ACCX and places the result in
ACCX,

Condition Codes: H: Not affected,

See Table A-1.
.,,,..$+.i..,.,..

Addressing Modes,

(DUAL OPERAND)

Coding of First (or only)
byte of machine code

HEX. OCT. DEC.

80 200 128
90 220 144
BO 260 176
AO 240 160
co 300 192
DO 320 208
FO 360 240
EO 340 224

‘A-66



B

D

B

Software Interrupt Swl
Operation:

Description:

Condition Codes:

PC+(PC) +0001
J (PCL) , SP e (SP)-0001

J (PCH) , SP ~ (SP)-0001

J (lXL) , SP ~ (SP)-0001

J (IXH) , SP - (SP)-0001
*,\*’X,l,$!,$<,.,,.,’~t’$:.

J (ACCA) , SP - (SP)-0001
‘!i.,,,1+ts.,..+$b.>,<,.‘1$,>.::: ..:$’:,:?:J.’,

J (ACCB) , SP e (SP)-0001
:\,,b‘ki,,i...,.,,.$::ftjt?~”

~:,.:!,+’J’*~,.,
J (cc) , SP + (SP)-0001

i<$,, ,:t,,,t$J,;,,&<,.,$.~~,~,
1+1

,k..\
.a,,.>~::v$

PCH e (n-0005)
J,...l$,:+?<:.,$:.\.,.- ,,!y‘,’,.$.,.>,.$.

PCL e (n-0004)
:X:.. ..+~.~..i),,;;,L?.:X:\:$

The program counter is incremented (by 1). The progr~fiafinter, index register,
and accumulator A and B, are pushed into the stack: $~~,~ndition codes register

is then pushed into the stack, with condition,c*~& H, 1, N, Z, V, C going

respectively into. bit positions 5 thru O, and the ~~j~~o bits (in bit positions 7 and 6)

are set (to the 1 state). The stack pointer is #~&~&mented (by 1) after each byte of

data is stored in the stack.
& +3,*$;*i.,%,,,‘*’~);~’

The interrupt mask bit is then set. ~~ pr~gram counter is then loaded with the
address stored in the software kfi~~{upt pointer at memory locations (n-5) and
(n-4), where n is the addreq~~$wsponding to a high state on all lines of the,:,,-+N..’,~>
address bus. .,,.t..,,?*,,:is.
H: Not affected. ..$?:..‘**’*,’.:!!t,,,,$
1: Seti

-. ‘**<,‘!.$.,,,
N: Not atiectqd:p$p

Z: Not affe~~~~~l~?~’:}’

V; Not a$%p.

C: Ng~~J~&fed.
... .

Boolean Formula for C,~#~~#n Codes:
I “$<~j

,:,:$&>::\:,I,.,],,*
.3:*,*.,t;

Addressing M@~s,’>~xecution Time, and Machine Code (hexadecimal/octal/ decimal):
,. ...!,,,\ ,.:1 . .

..!, .,>\><~v,~,,,,*,,\,.,,,,.\ .~~i\.\& Coding of First (or only)., ....,\\
‘+;5>‘.k:i?,,

,W>,\>l;l>.:\),~ Number of byte of machine code
A-sSing Execution Time bytes of
q, *ales

.:.*.*X,0,:!(,,.. (No. of cycles) machine code HEX. OCT. DEC.
. ,...+J,:j,,+,:l’::,,,T,,,

P~..,Y%lNHERENT 12 1 3F 077 063

A-67



Software Interrupt
EXAMPLE
A, Before:

A-68



Transfer from Accumulator A to Accumulator B TAB
Operation: ACCB + (ACCA)

Description: Moves the contents of ACCA to ACCB. The former contents of ACCB are lost.

The contents of ACCA are not affected.

Condition Codes: H:

1:

N:

z:

v:
c:



TAP

Operation: CC + (ACCA)

Bit Positions

76543210

Transfer from Accumulator A
to Processor Condition Codes Register

a

A-70



Transfer from Accumulator B to Accumulator A TBA

D Operation: ACCA + (ACCB)

Description: Moves the contents of ACCB to ACCA. The former contents of ACCA are lost.

The contents of ACCB are not affected.

Condition Codes: H:

1:

N:

z:
v:
c:

Not affected. ~~*~.*.
Not affected.

...... $,*,f!’}~{,?.(,!~tt.,:*,,,,?$ ‘,+
Set if the most significant accumulator bit is set; cleared othew~$$:~]-”

Set if all accumulator bits are cleared; cleared othewise. ,.,$,$..,?,,
,,$:,,.,:,$<),,‘,{s

0



TPA Transfer from Processor Condition Codes Register to
Accumulator A

Operation: ACCA + (CC)

Bit Positions

1

1

76543210

I

.,’?+*,

Description: Transfers the contents of the proces~i~on~ition codes register to corresponding

bit positions Othru 5 of accumulat~~~i Brt positions 6 and 7 of accumulator A are

set (i.e. go to the “ 1” state). .:~~fl~’bcessor condition codes register remains
,..:<...?,

unchanged. “’’;$\,

-.,;%
::1:>;}. ;.,~,~:$\

Addressing Modes, Execution Time, ,?fi:@~achine Code (hexadecimal/ octaI/ decimal):

A-72



Test TST

D Operation: (ACCX) – 00

(M) -00

D

B

A-73



TSX
Operation:

Description:

Condition Codes:

Transfer from Stack Pointer to Index Register

lx+ (SP) + 0001

Loads the index register with one plus the contents of the

contents of the stack pointer remain unchanged.

4
stack pointer. The

Not affected, ,:!$,
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal): sg:.;y.;:<ti,

,(,.~,.~,:,.. ~~,.>,! ~.,+*.:;\:,l,>,. . ,.

Coding of First (@~$F~~
Number of byte of mac~@~$j$@de

Addressing E~ecution Time bytes of ~+.\tjy!
Modes (No. of cycles) machine code HEX. @@*p ~’ DEC.

.,)
INHERENT

*,:f~~’
4 1 30 ,,,,A’J$$j$60 048

,.,.s~i~:,-,,....4’.~

9

A-74



Transfer From index Register to Stack Pointer Txs
o Operation: SP + (lx) – 0001

Description: Loads the stack pointer with the contents of the index register, minus one.
The contents of the index register remain unchanged.

D

B

A-75



WAI Wait for Interrupt

Operation: Pc + (Pc) + 0001
L (PCL) , SP + (SP)-0001 a

t (PCH) , SP + (SP)-0001
~ (lXL) , SP + (SP)-0001
~ (IXH) , SP + (SP)-0001 “’:\.:$,(,“

~ (ACCA) , SP + (SP)-0001
.>’.J.’\:t*>.,\:;,;:!,:..,,.,,b?>+ti>””

~ (ACCB) , SP + (SP)-0001
~\ ~>($:.i.i.‘$.,

*::~~k,):

J (cc), SP + (SP)-0001
~,.,,,‘:*$.1,,?-,$,:.?+iJ.:,,1.

\<{.,*y,.,,.,.-,.. ~.?,,,~,+..,,..~.y
Condition Codes: Not affected.

~,“k.,,!,,+., ,.,‘:’~!+,;,\:*~,~\y,,.,..,,)*!....si:z~
Description: The program counter is incremented (by 1). The program cOupt$&~,@exre9ister,

and accumulators A and B, are pushed into the stack, %&.condition codess.:.,..~.j~
register is then pushed into the stack, with condition coQ~~W$.l,N, Z, V, C going
respectively into bit positions 5 thru O,and the top two,,~~{~~’bit positions 7 and 6)
are set (to the 1 state). The stack pointer is decreme~~~[by 1) after each byte of

data is stored in the stack.
,~~+$,~+..“;\[*,*..,,,,,,..,.,}:,..>!..$p>,,~.a.

Execution of the program is then suspend,$~k~$$lan interrupt from a peripheral

device is signalled, by the interrupt requ’% control input going to a low state.,,$
When an interrupt is signalled on the,~$?~~~uptrequest line, and provided the I bit is

clear, execution proceeds as foll~~+s.”~he interrupt mask bit is set. The program

counter is then loaded with th@@&ks stored in the internal interrupt pointer at

memory locations (n-7) and (n-:6’~+~here n is the address corresponding to a high
state on all lines of the{@,dr@ss bus.

9
Condition Codes: H: Not affected. $~jjj>

1: Not affected.f~~~iY’~n interrupt request signal is detected on the interrupt
request co&F#~e. When the interrupt request is received the I bit is set and>.++yy,>,,*L,
further %,%ption takes place, provided the I bit was initially clear.

N: Not,&am~@d.

Z: N~$af@cted..S$:ka{q:;:i;s.‘
v:,,,,,~~~$]$affected.

%ji}t;,~~t affected.

Addressing Mod,~~~~xecution Time, and Machine Code (hexadecimal/octal/ decimal):
*:, Y<:,$>.YP’

,~~:>?,;$~\:).:,,.,4.,>$)\;,\,+,,‘~:s,..,.8~kj.> Coding of First (or only)
f.?+,~..,,.;, .,<,~ Number of byte of machine code

Ad,~f~#Sing Execution Time
,~.:~~es

bytes of
(No. of cycles) machine code HEX. OCT. DEC.?,.,,,+,.+t,,Y,,t...+>,,.,,i

$fi$,,@HERENT
y{>

9 1 3E 076 062

A-76



D

Addressing Mode of First Operand

Second Operand Accumulator A Accumulator B

lMMediate CCC A #number CCC B #number

CCC A #symbol CCC B #symbol
CCC A #expression CCC B #expression .-:\.r*,,
CCC A #’C CCC B #’C .*’!$.,J....,,,.,“,+,

~’!.>:,..-’

DIRect or EXTended
.,.<,,.....

CCC A number CCC B number ~~‘~~
~f,
:!,.<::,$*“+:....+.>!

CCC A symbol CCC B symbol ,~,,,~~y’”””

CCC A expression CCC B expres~f~~~~

IN Dexed CCC A X
~l:,*,;,\)*....?;

CCC B X $~a~ *

ccc z ,x CCC B,k&& ‘$‘F‘.,,

CCC A number,X CCC$,8~~$%ber,X

CCC A symbol,X C~$$8 S~mbol,X

CCC A expression,X Q&@~WWexpression,X
‘<:.\

Notes: 1. CCC = mnemonic operator of source instruction. ::,>~>i.>*!+.SY....,t>.e,.z..s,,,...
2. “symbol” may be the special symbol “*”. ‘. ~a%y)~ ,>~:t;,..~.J.3,,

...
3. “expression” may contain the special symbol “*’Y ..%K,FY
4. space may be omitted before A or B. ?“p::,::A ..,.

**’TSt..:.~,
Applicable to the, following source instructions: ~~+$$,““s.

ADC ADD AN@$s,glT CMP
EOR LDA ~~~’y SBC SUB

*Special symbol indicating program-coun~: ““
$;; ..,,,

TABLR k$~i~kddressing Formats (1),$:3~

/.,,. *].>, x.
.,, $:..,~..~:, ,, ..

Addressing Mode of+l~%$ ?’ First Operand
Second Operan~ ,~:N* Accumulator A Accumulator B

,~,
DIRect or EXTende{5/4+ STA A number STA B number

\.~\?,,$)*,..?:.:,,+,,;i~.,~.‘!1.:,, STA A symbol STA B symbol,!:}’
‘it:.s...<$J..,.r’,,, STA A expression STA B expression

INDexed,$%}~+”?~’ STA A X STA B X,’,: i.v,..:?.~.
‘,,:,%‘.,-’“kc,\:, STA A ,X STA B ,X

*i, *-”\,+,,,\#J*j,~~,.,, “>;,.,,>,,$. STA A number,X STA B number,X
it. .:.,\4i r> STA A symbol,X STA B symbol,X..,??*},‘$$*:,iJr:)v..,:,$,;::~,f~:,:,,~,,.:.*j STA A expression,X STA B expression,X

‘~&~es: 1. “symbol” may be the special symbol “*”.
]..i., 2, “expression” may contain the special symbol “*”.

3. Space may be omitted before A or B.

Applicable to the source instruction:

STA

*Special symbol indicating program-counter.

TABLE A-2. Addressing Formats (2)

A-77



Operand or
Addressing Mode Formats

Accumulator A CCC A

indicating

Notes: 1. CC~;&~~fle”monic operator of source instruction.

2. S~~$,~~ay be omitted before A or B.\..?”.’.,,.,,:{*:,,,

A-78



Addressing Mode

lMMediate

DIRect or EXTended

lNDexed

Formats

CCC #number
CCC #symbol
CCC #expression
ccc #’c ,,

.M&~. CCC = mnemonic operator of source instruction.
“:.$$:.~~$,-,, 2. “symbol” may be the special symbol “*”..::\:;?t~,...t,,,<,‘,’:~~ta,?.*~ 3. “expression” may contain the special symbol “*”,

Applicable to the following source instructions:

STS STX

D
*Special symbol indicating program-counter.

TABLE A-6. Addressing Formats (6)

A-79



A-80



APPENDIX B

B EXbug COMMANDS

B

~’:$:?

EXbug COMMANDS
.)1.*,+.,..

DESCRIPTION
,$.X. .}tt,,,,*-J.,> ,,,

.f~ ,j..si::t.7,
f>t.~{’t,;. ,,}$,

~: ,$.1.:~.:<*..[it

LOAD
~,,,\t\\]t..*$$,,

Initiates memory loader function.
., .,.., $,.,,

.8LIJ”,>,~.:i.,~’,\*”,$,..:>~,,,

VERF Compares contents of memory with tape data. Where $$/ual, prints

location in hexadecimal.
:j:. t.o}~”

~;$.*.+*:’i,.\“.::):\$:,tji?}

PNCH Instructs EXORciser to punch an absolute fq~~a@&d binary object
tape. ~+iii,,,.;:$,i$$s$~’,.. ~.,~,:i$$,<,,~$~:,

....,.
PRNT Causes terminal to print the content~~~~i&,rnemory in hexadecimal

followed by the literal ASCII characte.#V+~:t:.,,Ny~,:.~:$.,\~.,,~y
SRCH Searches tape for header rec&;@.*“Stops reader at first record

encountered and prints that re~{d. “
:.)...s/,:(%.,(,,Y

Slo, S30, & S120 Insertsnulls for proper .%,$~~ng during terminal operation at 110,

300, and 1200 Baud: ~~$~ 8, or 3 nulls, respectively, inserted after

standard ASCII c~ar~ters; 6, or 4, or 23, respectively, inserted

following carriage%~turn character.
:{$>+~~$,..F ,.>*,

S240
,..~,.!~<.*>i$~

Insefls nul~~,~, Proper printing during 2400 Baud terminal opera-

(EXbug 1.2 only) tion. Sev@#Ji~@ls inserted after standard ASCII characters; 47 nulls

insetiQ#$#&ing carriage return character.
\f,\ ~:,j,:,*.

TERM P$fi~~?t#e number of nulls currently being inserted after standard

(EXbug 1.2 only) ,#~@~ and carriage return characters. Permits either or both to
,,:,&,,,~.,,~&changed.

~.,.:>+,!:\ $;... t, ,~
MAID

.+:$.,,~$t:’,‘,\L.:...1y*l:X *.*?‘*i\,l,‘,.~.\<,\,

n/ d~>.a~ “ Print the contents of memory location n and enable the EXORciser.,:J .x.1,.,,......,:,*i.,.$:t.:..t./,$k, to change the contents of this memory location..x\,,,.al>:. .’,.,,
,. Y+....

-“t,,q&4,,$ Calculate the address offset (for relative addressing mode
*$~.,,...$.,,J.,.\t.,.b<>$tt,,, instructions.$~$.\>,,~~+,.,,,,3,,,’~

‘+$’‘“(LF) Print the contents of the next sequential memory location and

enable the EXORciser to change the contents of this memory

location (LF — Line Feed character).

T Print the contents of the previous sequential memory location

and enable the EXORciser to change the contents of this

memory location {~ — up arrow character, or SHIFT key, or N

character).



B-2



APPENDIX c
@

MIKbug COMMANDS

OPERATION DESCRIPTION

“J.:,~.<.\,~
L

>..7
Load tape.

M Memory change.
R

P Ptint/ punch tape.

G Go to location.

B

B



c-2



B

APPENDIX D
MIN1bug II COMMANDS

B

D-1



D-2



APPENDIX E
MINlbug Ill COMMANDS

E-1



E-2



D

APPENDIX F
ASCII CODE CONVERS1ON TABLE

—

F-1



F-2



APPENDIX G
HEXADECIMAL AND DECIMAL CONVERSION

From hex: locate each hex digit in its corresponding column position and note the decimal

equivalents. Add these to obtain the decimal value. ,*!*
.[,3,

es:<.\.*:<2~,

From decima/: (1) locate the largest decimal value in the table that, will fit into the decimal ~~”>:~~,:.”

number to be converted, and (2) note its hex equivalent and hex column position. (3) Find:t,;$!,,~

the decimal remainder. Repeat the process on this and subsequent remainders. .. ‘~:?’:f’<
,,.:,’~‘“ ~t ,:tt\J

HEXADECIMAL COLUMNS

46 5 3 1

HEX = DEC HEX = DEC HEX = DEC

o 0

1 4,096
2 8,192

3 12,288

4 16,384

5 20,~80 ~~

6 2$%$6

7p’s@B72

,,$~&$~,768
:i$,:S’”36,864

‘~ 40,960

B 45,056

C 49,152

D 53,248

E 54,344
F 61,440

HEX = DEC HEX = DEC

o
1
2

3

4

5

6

7

8

9

A

B

o
65,536

131,072

196,608

262,144

327,680

393,216

458,752

524,288

589,824

0 ‘${i
1 $g,,25@

2 ~p~:$“51 2
$$:>,,, 768
p

1,024

5 1,280

6 1,536

7 1,792

8 2,048

9 2,304

A 2,560

B 2,816

c 3,072

D 3,328

E 3,584
F 3,840

00
1 1

22

33
44

55

66

77

88

99

A 10

B 11

c 12

D 13
E 14
F 15

0 0
1 1,048,576
2 2,097,152

3 3,145,728

4 4,194,304

5 5,242,880

6 6,291,456

7 7,340,032

8 8,388,608

9 9,437,184

A 10,485,760

B 11,534,336

C 12,582,912

D 13,631,488

E 14,680,064 ~,y gl 7,504
F’ 983,040

45674567 0123 0123 4567

BYTE BYTE

G-1



POWERS OF 2

2n n

256 8
512 9

1024 10
2048 11
4096 12
8192 13

16384 14

32768 15

65536 16
131072 17
262144 18
524288 19

1048576 20
2097152 21
4194304 22
8388608 23

16777216 24

20= 160

24 = 161

28 = 162

212 = 163

21’ = 164

220 = 165
224 = 166

228 = 167

232 = 168

236 = 169

240 = 1610
244 = 1611

246 = 1612
252 = 1613

256 = 1614

2’0 = 1615

POWERS OF 16

G-2



,

9
@

MOTOROLA Semiconductor Products Inc.
P.o. BOX 20912 ● PHOENIX, ARIZONA 85036 ● A SUBSIDIARY OF MOTOROLA INC


	TITLE
	TABLE OF CONTENTS
	CHAPTER 1 - INTRODUCTION
	CHAPTER 2 - HARDWARE DESCRIPTION
	CHAPTER 3 - PROGRAMMING THE M6800 MICROPROCESSOR
	CHAPTER 4 - M6800 MICROPROCESSOR ADDRESSING MODES
	APPENDIX A - DEFINITION OF THE EXECUTABLE INSTRUCTIONS
	APPENDIX B - EXBUG COMMANDS
	APPENDIX C - MIKBUG COMMANDS
	APPENDIX D - MINIBUG II COMMANDS
	APPENDIX E - MINIBUG III COMMANDS
	APPENDIX F - ASCII CODE CONVERSION TABLE
	APPENDIX G - HEXADECIMAL AND DECIMAL CONVERSION

